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Annual	Technical	Report	
DE-NA0002375	

April	1,	2018	through	March	31,	2019 
Carbon	Capture	MulBdisciplinary	SimulaBon	Center	

The Carbon Capture Mul@disciplinary Simula@on Center (CCMSC) was established to 
demonstrate posi@ve societal impact of extreme compu@ng by deployment of low-cost, low-
carbon energy solu@on for power genera@on.  The overall strategy includes collabora@on with 
our industrial partner, General Electric Power, with an inter-disciplinary focus on development of 
high-performance compu@ng technology.  Three teams contribute to the overarching predic@ve 
science:  the computer science team, the physics team and the valida@on/UQ team.   

The Center has been driven by the mission of predic@ng the heat flux profile for the design of a 
new technology for a full-scale pulverized solid-fuel (coal) thermal power genera@on boiler to a 
proven level of uncertainty using large-eddy simula@ons (LES) on the largest computa@onal 
resources available to us.  In FY19 the center demonstrated: 

• Improvement in our uncertainty quan@fica@on process for extrapola@ng uncertainty from 
the pilot scale data to the full-scale predic@on by iden@fying scenario parameter uncertainty 
and by propaga@ng not only model parameter uncertainty but also model form uncertainty  
into the predic@on. 

• Reduced the model form bias in our overarching simula@on from 30% to 8% by iden@fying 
the source of the largest bias to be in the ash deposi@on models, and thus reducing that 
bias by improving the quality of the deposit models. This model improvement included 
models for deposit par@cle sintering and the effect of sintering on surface emissivity. 

• Demonstra@on that the Asynchronous Many Task (AMT)  run@me system  (Uintah) makes it 
possible to run complex, mul@-phase, mul@-physics applica@ons such as the A@kokan  boiler 
using Arches at the largest processor counts available to us. 

• Addi@onally, we have made the most computa@onally challenging task, thermal radia@on via 
ray tracing, to strong and weak scale on the same architectures and have shown how 
performance portability is achieved by using the Kokkos system via a machine independent 
loop layer in Uintah. 

• The PIDX data I/O library has matured from a proof of concept prototype to a fully 
integrated and supported file format within Uintah. 

• Incorpora@on of in situ visualiza@on in to the Uintah framework using VisIt’s in situ 
interface, libsim, by expanding Uintah’s run@me infrastructure in the form of a more 
centralized collec@on of performance data, simula@on parameters, debugging mechanisms, 
and run@me controls and presen@ng this collec@on to users via a simula@on dashboard, and 
providing them with the ability to do interac@ve parameter explora@on, visual debugging, 
and computa@onal steering. 

• A coupled simula@on-machine layout making it possible to iden@fy computa@onal 
boilenecks that would otherwise be difficult to diagnose.  
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OUTREACH	AND	EDUCATION	
Current	Students	and	Post-doctoral	Associates	

• Teri Draper, Ph.D. candidate, University of Utah 
• Jebin Elias, Ph.D. candidate, University of Utah 
• Joshua McConnell, Ph.D. candidate, University of Utah 
• John Holmen, Ph.D. candidate, University of Utah 
• Damodar Sahasrabudhe, Ph.D. candidate, University of Utah 
• Pavol Klacansky, Ph.D. candidate, University of Utah  
• Qi Wu, Ph.D. candidate, University of Utah  
• William Usher, Ph.D. candidate, University of Utah 
• Damodar Sahasrabudhe, Ph.D. candidate, University of Utah 
• Kaitlyn Scheib, M.S. candidate, University of Utah 
• Kamron Brinkerhoff, M.S. candidate, Brigham Young University 
• Andrew Richards, Ph.D. candidate, Brigham Young University 
• Arun Hegde, Ph.D. candidate, University of California-Berkeley  
• Wenyu Li, Ph.D. candidate, University of California-Berkeley  
• Jim Oreluk, Ph.D. candidate, University of California-Berkeley 
• Oscar Diaz-Ibarra, post-doctoral research fellow, University of Utah 
• John Camilo Parra Alvarez, post-doctoral research fellow, University of Utah 

Post-degree	CCMSC	Students’	Employment	
• Christopher Earl, staff member, Lawrence Livermore Na@onal Laboratory 
• Ben Schroeder, staff member, Sandia Na@onal Laboratory-Berkeley 
• Alexander Abboud, staff member, Idaho Na@onal Laboratory 
• Aaditya Landge, solware engineer, Twiier 
• Pascal Grosset, staff member, Los Alamos Na@onal Laboratory  
• Mark Kim, staff member, Oak Ridge Na@onal Laboratory 
• Troy Holland, post-doctoral associates, Los Alamos Na@onal Laboratory 
• Oscar Diaz-Ibarra, post-doctoral research fellow, University of Utah 
• John Camilo Parra Alvarez, post-doctoral research fellow, University of Utah 
• Siddharth Kumar, asst. professor, Computer Science, Univ. of Alabama, Birmingham 
• Siddartha Ravichandran, staff member, Expedia 
• Michael D. Brown, staff, Hi-Rez Studios 
• Alex Josephson, post-doctoral fellow, Los Alamos Na@onal Laboratory 
• Babak Goshayeshi, senior scien@fic solware engineer, Merck & Company 
• Alex Josephson, postdoctoral researcher, Los Alamos Na@onal Laboratory 
• MinMin Zhou, senior engineer, Reac@on Engineering Interna@onal 
• Daniel Gunderson, engineer, Big West Oil Refinery 
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Educa:on	
A full semester training course was presented to Center personnel interested in learning hybrid 
valida@on, uncertainty quan@fica@on, and machine learning methods employed and/or 
developed at the center. Class projects included center deliverables including a range of 
instrument models used across the center for valida@on of the center hierarchy. 

Internships	and	Staff	Lab	Visits	
Kaitlyn Scheib completed a student internship at Los Alamos Na@onal Laboratory under the 
mentorship of Dr. Gowri Srinivasan.  She worked on a project that runs simula@ons of flow 
through discrete fracture networks in subsurface rock.  These simula@ons have many different 
applica@ons including fracking, nuclear waste disposal, geothermal energy and CO2 
sequestra@on.  Kaitlyn learned about Machine Learning (ML) methods and performed sensi@vity 
analyses of different parameters on the breakthrough @mes from the simulated fracture 
networks.  She used regression to predict the breakthrough @mes from given input parameters 
for a fracture network. 

Mokbel Karam joined Dr. Fady Najjar and Dr. Ming Jiang for an internship in Machine Learning 
(ML) at Lawrence Livermore Na@onal Laboratory during summer 2018.  Mokbel’s focus was on 
assimila@ng basic knowledge in machine learning algorithms and how they can be applied to 
fluids. In par@cular, he inves@gated the predic@ve capabili@es of several machine learning models 
applied to the Sedov-vonNeumann-Taylor blast wave problem, including Polynominal Regressors, 
Random Forest with Decision Trees Es@mators and Mul@layer Neural Networks, using Tensorflow.  
He has recently changed projects under his faculty advisors, James C. Sutherland and Tony Saad. 

Damodar Sahasrabudhe completed his student internship at Sandia Na@onal Laboratory in 
summer 2018 working with Eric Phipps and Sivasankaran Rajamanickam.  Damodar focused on 
crea@ng a portable version of the SIMD primi@ve using the exis@ng KNL back-end from the stk 
package in Trilinos and created a new CUDA back-end for the primi@ve.  To test it, three kernels 
were converted – gemm, spmv and Uintah’s charoxida@on kernel – to use the portable SIMD 
primi@ve and were able to run the same code on a CPU and a GPU.   

Will Usher and Duong Hoang worked at LLNL with Peter Lindstrom on par@cle compression 
strategies using ZFP during summer 2018. 

Pavol Klacansky also spent summer 2018 at LLNL where he worked on a prototype VR tool for 
inspec@on of a scanned 3D printed parts.  The prototype allows visualiza@on of the data and 
provides an ability to measure distances and angles.  The user can also mark defects for later 
inspec@on. 

Danny Gunderson completed his internship with Russel Whitesides at Lawrence Livermore 
Na@onal Laboratory from September to December 2018.  His project dealt with using the latest 
data science techniques to determine which physical features were most helpful in predic@ng 
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octane number (RON).  Some of his findings were that the igni@on delay @me and fuel density 
were the most predic@ve in determining RON.  He reported that his efforts were helpful in the 
ongoing efforts to create a closed loop op@miza@on problem to find the best fuel mixtures that 
result in synergis@c octane boosts.   

Arun Hegde enjoyed a summer internship at Sandia Na@onal Laboratory in Albuquerque working 
with Bart Van Bloemen Waanders assembling a forward model for direct write addi@ve 
manufacturing based on the peridynamic theory.  Addi@onally, Arun is inves@ga@ng the impact of 
using linear surrogates in situa@ons where the ground truth is quadra@c. 

Jim Oreluk completed his internship with Dr. Habib Najm at Sandia Na@onal Laboratory at 
Livermore.  He worked on two projects.  One project dealt with parameter es@ma@on for 
dynamical systems and the second one inves@gated a probabilis@c embedding of model error, 
parameterized by random field.  He con@nued work on iden@fying poten@al model discrepancy 
func@ons and their generalizability for quantum chemistry predic@ons. 

Allen Sanderson (research	computer	scien0st)	visited and presented at Sandia Na@onal 
Laboratory, Los Alamos Na@onal Laboratory Summer School, and Argonne Na@onal Laboratory 
this year.  He visited LLNL in October to work with the VisIt team on in	situ and visualiza@on 
infrastructure.  The collabora@on with LLNL assisted in the formaliza@on of the triggers and 
deployment of the selec@on inclusion lists.  The lists allow users to quickly sub-select large 
groups of data, such as viewing patches that are on a par@cular MPI rank or node. 

Ben Isaac (professional	engineer)	and Jeremy Thornock (research	professor) spent a week at 
LLNL at the invita@on of Greg Burton to discuss the work at Utah’s PSAAP Center with lab 
personnel.  Two presenta@ons were given and efforts were made to develop new rela@onships 
and to work on the NLES closure in Arches.   
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COMPUTER	SCIENCE:		EXASCALE	RUNTIME,	VISUALIZATION,	I/O	

PIDX	support	for	par:cle	data	
During the year we have con@nued to make progress on the development of new features for 
par@cle data and I/O support in PIDX. In par@cular, we are experimen@ng with different data 
aggrega@on strategies and comparing with IOR benchmark performance. 

Sub-filing and two-phase I/O are commonly employed aggrega@on techniques to balance the 
trade-off between file per-process and single file (i.e., collec@ve) I/O. However, exis@ng I/O 
systems typically treat par@cle data as a stream of bytes, and ignore spa@al correspondence in 
the data when applying sub-filing and two-phase I/O. We tackle these challenges by first building 
a correspondence between a par@cle’s spa@al loca@on and its posi@on in the file. This way we 
built a two-phase I/O for par@cle data that maintains spa@al locality of the par@cles on disk.  
  
The following figures report a series of experiments run on Mira and Theta wri@ng 32K and 64K 
par@cles per core using different aggrega@on configura@on (e.g., 2x2x4 stand for aggrega@ng 
every 2 cores over the X axis, 2 over Y and 4 over Z). Our two-phase I/O outperform file per 
process and shared file I/O performance with IOR and HDF5, while wri@ng data in a layout that is 
more suitable for analysis and visualiza@on tasks (i.e., maintaining spa@al locality). 

 
Figure	1.	Computa0onal	Experiments	on	Mira	and	Theta	
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Furthermore, we performed read experiments on a smaller number of cores to demonstrate the 
importance of spa@al locality and metadata in our data format. In the following figure, we report 
the result of those experiments performed on Theta and on an SSD equipped worksta@on. Our 
approach, using spa@al correspondence, provides good strong scaling and read performance, 
even at far fewer cores than the data was wriien with. On the contrary, reading from the formats 
with poor or no spa@al locality are significantly slower and their performance decrease at scale. 

 
Figure	2:	Computa0onal	Experiments	on	Theta	and	on	an	SSD	equipped	worksta0on.	

Our I/O system for par@cle data can also reorganize the data into Level of Details (e.g., groups of 
par@cles iden@fying different level of resolu@on of the data). For example, we perform a random 
reshuffling of the par@cles before wri@ng them to disk and we are able to access different levels 
progressively. We experiment reads at different Level of Details (LOD) on the same two platorms 
(Theta and SSD equipped worksta@on) demonstra@ng that with our I/O system LOD reads can be 
performed efficiently and provide interac@ve data access. In the following figures, we report LOD 
read performance on an SSD Based Worksta@on (a) and Theta (b) using 64 cores to read 
progressively higher levels from a 2 billion par@cle dataset. Our ordering allows fast reads for low 
levels of detail and does not increase significantly un@l reading large por@ons of the dataset. 

 
Figure	3:	LOD	read	performance	on	an	SSD	Based	Worksta0on	(a)	and	Theta	(b)	using	64	cores.	
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Finally, we provide in the following figure a closer look at the visualiza@on results to show the 
prac@cal effec@veness of the approach for a specific zoomed-in region for a coal par@cle injec@on 
simula@on dataset with 55 million par@cles, wriien using a random reshuffling for level of detail. 
In par@cular, the figure shows four visualiza@ons obtained while progressively more par@cles are 
read, from (a) 25% to (d) 100% of the data. Lower resolu@ons using this LOD ordering can s@ll 
provide a good representa@on of the data and be read quickly using our I/O strategy. 

	
Figure	4:	Visualiza0on	Results	for	Par0cle	Injec0on	

PIDX	deployment	and	integra:on	with	Uintah	and	VisIt	
PIDX deployment has been improved to support Windows platorms. Con@nuous integra@on 
tools are used to build and test the library at every commit on the GitHub repository on every 
major OS platorm (i.e., OSX, Linux, Windows). The compression library “zfp”, used by PIDX for 
lossy compression, has been updated to the latest version and integrated as a git submodule in 
order to improve traceability and maintainability of the code.  Two new versions of the PIDX 
library had been released adding support for integer compression, enhanced data par@@oning, 
templated @me series and par@cle data two phase I/O. 

The Uintah build system can automa@cally build, link and set PIDX to be used as I/O system. New 
scripts have been developed to allow genera@on of global metadata files which represent a 
collec@on of several restarts of the simula@on. The PIDX library together with Uintah and VisIt 
with the latest IDX reader have been deployed on Pascal and Surface and used, by all ARCHES’s 
users in the Uintah team, for several simula@on runs.  We supported the simula@on team in their 
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runs, discussing and fixing bugs related to metadata (e.g., how to produce comprehensive @me 
series to make a movie), visualiza@on (e.g., ghost cells and extra cells management), data 
aggrega@on (e.g., how to limit the number of files produced) and data streaming. 

The following figure depicts one @mestep of an Uintah simula@on saved in PIDX and rendered 
using VisIt on Pascal. 

	

Figure	5:	One	0mestep	of	an	Uintah	simula0on	saved	in	PIDX	and	rendered	using	VisIt	on	Pascal.	

The latest VisIt IDX reader has been merged into the new GitHub repository of the VisIt 
visualiza@on framework and will be distributed in the next 3.0 release. 

Topology-based	Analysis	
Topology-based approaches have proven par@cularly useful in studying proper@es of combus@on. 
For instance, Reeb graphs, contour trees, and merge trees are used to iden@fy igni@on kernels, 
track the merging of flame components, and extract vor@cal structures. Morse-Smale complexes 
are used to iden@fy ridge-surfaces corresponding to flame fronts, dissipa@on elements that 
measure turbulence scales, and par@@on the flame into zones. We have focused on scaling the 
underlying computa@on of the topological data structures to scales relevant to analyze 
combus@on data from the PSAAP use case. First, we developed a shared-memory parallel 
approach to extract Morse-Smale complexes with the accuracy needed to analyze flame fronts, 
improving the speed by a factor of 30x and size of data that could be addressed by 10x over 
previous approaches. This approach was published in IEEE Visualiza@on 2018 and presented at 
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the conference. We also developed a new data structure for rapid computa@on of merge trees, 
that improves by an order of magnitude the speed of computa@on on shared-memory parallel 
systems and has been demonstrated on two orders of magnitude larger data than previously 
possible. This work is currently under review for IEEE Visualiza@on 2019. It also marks a 
launching-off point for faster in-situ topological queries, as the localized data structure avoids the 
V-cycle communica@on paiern usually used to resolve large-scale topological features. We are 
working on extending the localized data structure to support adap@ve precision and resolu@on 
grids with dynamic refinement to enable analysis of large data sets on shared-memory systems. 
This direc@on requires progress on an in-memory data structure to support the forest 
construc@on, and on deriving heuris@cs and theore@cal bounds for lower resolu@on and 
precision topological structures. 
 

Figure	6:	Leveraging	a	
combina0on	of	numerical	and	
discrete	methods,	the	parallel	
computa0on	of	MS	complex	is	
possible	avoiding	the	discre0za0on	
ar0facts	common	to	topological	
approaches.	This	allows	accurate	
flame	surface	computa0on	to	use	
later	as	a	scaffolding	for	analysis.		

We are also developing tools to use topological structures like merge trees and Morse-Smale 
complexes to extract high dimensional feature spaces for Machine Learning tasks (classifica@on/
regression). The global topological structure (at full-scale) provides various aiributes that 
summarize the data. For instance, number of leaves in the merge tree, number of branches, size 
of the branches, Bew number, number of regions in Morse-Smale complex segmenta@on, 
boundary surface area of ridges etc. are some aiributes that represent the underlying structure 
of the data. We compute these aiributes as a func@on of persistence i.e. we simplify the global 
topological structure by merging features whose life@me (death-birth @me) is below the 
threshold persistence and perform sta@s@cal analysis (like compu@ng mean, variance, 
histograms, area under the curve, curvature etc.) to form feature spaces for Machine Learning. 
Our ini@al results show that training Machine Learning models using these feature spaces to be 
useful in both classifica@on and regression tasks. 

Mul:variate	Visualiza:on	System	
We have designed a browser-based visualiza@on system to support analysis of data such as that 
coming from the boiler simula@on facility (BSF). The system is fully configurable allowing 
rearrangement of user interface components, sor@ng dimensions within plots, and mul@ple 
coordinated selec@ons across different views of the data as well as a toolbar for suppor@ng more 
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complex opera@ons such as aligning filters to the set ranges of a par@cular set of data. An 
example of the interface is shown in the Figure below. The system employs mul@ple annotated 
parallel coordinate plots in order to compare results stemming from physical experimenta@on, 
computer simula@on, and regression modeling in order to iden@fy and understand discrepancies 
occurring between various data sets and to validate when a reduced order modeling is capable of 
represen@ng an experiment faithfully. This project is open source and available at hips://
github.com/maljovec/quetzal. 

 

 
Figure	7:	An	example	of	the	designed	mul0variate	visualiza0on	system,	quetzal,	opera0ng	on	BSF	data.	

An example analysis is provided in the Figure below. Here, we observe two separate parallel 
coordinate plots that are linked by the selec@on in the boiom plot. In the boiom plot, the O2 
concentra@ons are observed at 41 different ports in a boiler tower. Each line represents a single 
simula@on or model run and there is a corresponding line for every run in both the upper and 
lower plots. The different colors denote whether the run was a result of a simula@on, a prior 
sample, a posteriori sample, or a result of a surrogate model. We have selected the experimental 
ranges of eight different observed O2 concentra@ons as shown by the collec@on of black boxes 
near the center of the lower plot. The result is that we have filtered all data that does not 
intersect this selec@on. With this informa@on, we can then look at the top plot which shows the 
input parameter space that led to this set of filtered simula@ons to understand what ranges of 
input values correspond to this subset of data. Furthermore, summary informa@on is provided in 
the legend showing how many runs of each dataset exist within the filter we have created. This 
visualiza@on system has been useful for the engineering team to quickly and concisely convey 
informa@on and to draw conclusions from their data. 
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Figure	8:	An	Example	Analysis	

An analysis of O2 concentra@ons observed at various physical ports in the tower. Here we have 
filtered the data such that we only consider data points that lie within our experimental range for 
8 of the 41 physical ports (each denoted by a ver@cal axis). 

Advanced	Visualiza:on	
We’ve been working on new scalable and flexible distributed rendering methods in OSPRay and 
using them to implement post-process and lightweight in	situ visualiza@on systems. Our 
Distributed FrameBuffer within OSPRay provides performance beier than the state-of-the-art in 
common use cases and supports more flexible data distribu@ons which are not otherwise 
possible. Moreover, we have implemented a data-distributed API for OSPRay, which enables its 
use within in	situ visualiza@on applica@ons. With regard to in	situ we've also been exploring more 
lightweight infrastructures, which can be easier to integrate and incur lower overhead, while s@ll 
enabling the desired in	situ visualiza@on (e.g., by integra@ng SENSEI). We have under submission 
early work on developing faster spa@ally aware I/O strategies for par@cle data and are working to 
build accelera@on structures within this format which are suitable for mul@-resolu@on 
visualiza@on and streaming. Furthermore, we have developed new geometric representa@ons for 
complex or challenging data, such as isosurfaces in BS-AMR data and general tube primi@ves 
(e.g., streamlines). Along this path we are con@nuing work to support volume and isosurface 
rendering of other AMR formats, such as those used in Uintah and p4est. Finally, we have been 
inves@ga@ng the applica@on of the new GPU RTX hardware units to accelerate visualiza@on and 
volume rendering tasks. 
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Figure	9:	Large-scale	interac0ve	visualiza0on	using	the	Distributed	FrameBuffer.	Top	le`:	Image-parallel	
rendering	of	two	transparent	isosurfaces	from	the	Richtmyer-Meshkov	(516M	triangles),	8FPS	with	a	
20482	framebuffer	using	16	Stampede2	Intel	Xeon	Pla0num	8160	SKX	nodes.	Top	right:	Data-parallel	
rendering	of	the	Cosmic	Web	(29B	transparent	spheres),	2FPS	at	20482	using	128	Theta	Intel	Xeon	Phi	
Knight's	Landing	(KNL)	nodes.	Boeom:	Data-parallel	rendering	of	the	951GB	DNS	volume	combined	with	
a	transparent	isosurface	(4.35B	triangles),	5FPS	at	4096x1024	using	64	Stampede2	Intel	Xeon	Phi	KNL	
nodes.	

�  

Figure	10:	Visualiza0ons	using	our	"generalized	tube"	primi0ves.	(a):	DTI	tractography	data,	semi-
transparent	fixed-radius	streamlines	(218K	line	segments).	(b):	A	generated	neuron	assembly	test	case,	
streamlines	with	varying	radii	and	bifurca0ons	(3.2M	l.	s.).	(c):	Aneurysm	morphology,	semi-transparent	
streamlines	with	varying	radii	and	bifurca0ons	(3.9K	l.	s.)	and	an	opaque	center	line	with	fixed	radius	and	
bifurca0ons	(3.9K	l.	s.).	(d):	A	tornado	simula0on,	with	radius	used	to	encode	the	velocity	magnitude	
(3.56M	l.	s.).	(e):	Flow	past	a	torus,	fixed-radius	pathlines	(6.5M	l.	s.).	Rendered	at:	(a)	0.38FPS,	(b)	
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7.2FPS,	(c)	0.25FPS,	(d)	18.8FPS,	with	a	2048x2048	framebuffer;	(e)	23FPS	with	a	2048x786	framebuffer.	
Performance	measured	on	a	dual	Intel	Xeon	E5-2640	v4	worksta0on,	with	shadows	and	ambient	
occlusion.	

�  

Figure	11:	High-fidelity	isosurface	visualiza0ons	of	gigascale	block-structured	adap0ve	mesh	refinement	
(BS-AMR)	data	using	our	method.	Le`:	a	28GB	GR-Chombo	simula0on	of	gravita0onal	waves	resul0ng	
from	the	collision	of	two	black	holes.	Middle	and	Right:	a	57GB	AMR	dataset	computed	with	LAVA	at	
NASA,	simula0ng	mul0ple	fields	over	the	landing	gear	of	an	aircra`.	Middle:	isosurface	representa0on	of	
the	vor0city,	rendered	with	path	tracing.	Right:	a	combined	visualiza0on	of	volume	rending	and	an	
isosurface	of	the	pressure	over	the	landing	gear,	rendered	with	OSPRay's	SciVis	renderer.	Using	our	
approach	for	ray	tracing	such	AMR	data,	we	can	interac0vely	render	crack-free	implicit	isosurfaces	in	
combina0on	with	direct	volume	rendering	and	advanced	shading	effects	like	transparency,	ambient	
occlusion	and	path	tracing.	

�  

Figure	12:	Interac0ve	in	situ	visualiza0on	of	a	172k	atom	simula0on	of	silicene	forma0on	with	128	
LAMMPS	ranks	sending	to	16	OSPRay	renderer	ranks,	all	executed	on	Theta	in	the	mpi-mul0	
configura0on.	When	taking	four	ambient	occlusion	samples	per-pixel,	our	viewer	averages	7FPS	at	
1024x1024.	Simula0on	dataset	is	courtesy	of	Cherukara	et	al.	

Data	Models	with	Resolu:on	vs	Precision	Trade-off	
We explore the addi@onal gains that could be achieved by combining reduc@on in precision and 
reduc@on in resolu@on. In par@cular, we developed a common framework that allows us to study 
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the trade-off in both dimensions of data reduc@on in a principled manner. We represent data 
reduc@on schemes as progressive streams of bits and study how various bit orderings such as by 
resolu@on, by precision, etc., impact the resul@ng approxima@on error across a variety of data 
sets as well as analysis tasks. Furthermore, we compute streams that are op@mized for different 
tasks to serve as lower bounds on the achievable error. Scien@fic data management systems can 
use the results presented in this paper as guidance on how to store and stream data to make 
efficient use of the limited storage and bandwidth in prac@ce. 

� �  

Figure	13:	Le`	Figure—Root-mean-square	error	(RMSE)	of	reconstructed	func0on	(plasma)	for	different	
data	streams.	The	“by	wavelet	norm”	stream	(combining	both	resolu0on	and	precision)	performs	beeer	
than	both	“by	level”	(resolu0on	only)	and	“by	bit	plane”	(precision	only).	Right	Figure—Laplacian	error	
induced	by	the	same	set	of	data	streams.	Here,	“by	wavelet	norm”	and	“by	bit	plane”	perform	similarly,	
sugges0ng	that	deriva0ve-type	computa0ons	prefer	resolu0on	over	precision.	

File	Format	Extension	Suppor:ng	Data	Queries	in	Both	Resolu:on	and	Precision	
Based on our IEEE VIS 2018 paper, we are 
developing a novel file format for scien@fic data 
that supports (region-of-interest) queries for 
data at low resolu@on and low precision, 
without reading redundant bits from disk. The 
format is based on discrete wavelet transform, 
compression of @les of wavelet coefficients 
using zfp, and separa@on of every compressed 
@les into equal-size chunks which are units of 
data to be wriien to and read from disk. The 
diagram below shows the current design for the 
format that we plan to deploy during the next 
year. 
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Figure	14:	The	current	design	for	file	format	

Par:cle	compression	
We implemented binomial coding to compress par@cle data sets. The results are shown in the 
following table. In these experiments, we build a kd-tree on the par@cles where each spliwng 
plane is at the exact middle in the spa@al domain and each tree node stores the number of 
par@cles falling in that node. We are interested in compressing these numbers stored at the 
nodes only (that is, for now, we stop encoding informa@on aler reaching one par@cle per node).  

Table	1:	The	ra0o	of	data	compressed	with	our	method	(based	on	binomial	distribu0on)	over	data	
compressed	using	state-of-the-art	method	(based	on	uniform	distribu0on).	In	most	cases	we	can	achieve	
a	further	reduc0on	of	about	14%	in	data	size,	except	for	cosmology	data	for	which	the	distribu0on	of	
par0cles	is	highly	non-uniform.	
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Figure	15:	Visualiza0on	of	the	original	par0cle	data	(Priya,	4.7	million	par0cles)	and	its	6x	compressed	
version	using	our	method.	The	two	renderings	are	visually	iden0cal.	

Physics	Decoupling	from	Run:me	
During the year there was a major effort to complete the restructuring and decoupling of the 
Uintah run@me infrastructure from the physics applica@ons. Thus, making the Uintah run@me 
infrastructure fully independent of the applica@ons which improved long term maintainability 
and portability. One highlight was to formally add run@me triggers, which are events that change 
or augment the normal code execu@on. Among other abili@es, the triggers allowed for dynamic 
solve frequencies rather than the previous sta@c frequency. The dynamic solve frequency was 
used to improve the radia@on solve calcula@ons in Arches.  

VisIt	and	In	Situ	Visualiza:on	
Another major effort was to con@nue to harden and expand the in	situ performance data analysis 
and visualiza@on. Performance stats can be collected, visualized, and analyzed across both the 
run@me infrastructure and the physics applica@ons.  This work was presented and published in 
the Workshop on In	Situ Visualiza@on at ISC (June 2018). New addi@ons were made to collect 
thread performance data as well as patch-based performance data on both the simula@on and 
machine layout. The ability to use mul@ple layouts has been a valuable tool in understanding 
different performance phenomena such as load balancing issue. In one case, it was discovered 
that ranks went unused. Now work has commenced to collect communica@on performance data. 

We completed the work on scalable volume rendering research and development in May 2018 
and presented the peer-reviewed, published research results at the Eurographics Parallel 
Graphics and Visualiza@on (EGPGV) Symposium and at the annual review in Utah. As noted in last 
year’s annual report, large-scale simula@ons can produce data easily in excess of what can be 
efficiently visualized using produc@on visualiza@on solware, making it challenging for scien@sts 
and engineers to gain insight from the results of these simula@ons.  This scalability trend will 
worsen with exascale, requiring modifica@on to visualiza@on packages to handle visualiza@on at 
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these large scales and new hardware architectures. We developed an effec@ve integra@on of 
OSPRay into VisIt to provide a scalable rendering backend.  This is coupled with CCMSC’s work on 
PIDX for scalable I/O. Now we can render geometry defined by VisIt along with the scalable 
volume rendering.   

Our implementa@on achieves up to 30 @mes higher framerates than VisIt’s 
RayCas@ng:Composi@ng renderer, while producing equivalent high-quality images. Furthermore, 
we have achieved significant strong and weak scaling improvements up to 32,768 CPU cores on 
recent HPC platorms equipped with Intel® Xeon Phi™ (KNL) processors and Intel® Xeon® 
Pla@num Skylake (SKX) processors.  Specifically, our engineering contribu@ons to VisIt’s 
distributed rendering capabili@es are: 

• Moving to a hybrid-parallel execu@on model, 
• Leveraging OSPRay for fast volume rendering, and 
• Improving the use of IceT for image composi@ng. 

�  
Figure	16:	High-quality	interac0ve	volume	visualiza0on	using	VisIt-OSPRay:	a)	volume	rendering	of	O2	
concentra0on	inside	a	combus0on	chamber	

This research was presented and published at Eurographics Parallel Graphics and Visualiza@on 
(EGPGV) Symposium, June 2018. 
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PHYSICS	

Model	Development:	Emissivity	Model,	Produc:on	Code	
Ash transforma@ons on the walls affect heat transfer and combus@on efficiency. Emissivity and 
thermal conduc@vity are primarily influenced by these phenomena, which in turn is driven by the 
composi@on of the deposi@ng par@cles, and the type of physical structures they form on the hot 
surfaces. Past efforts have updated the way we model emissivity on the walls and last year, we 
improved yet again the methodology.  

In the produc@on code, we have implemented a way to compute spectral emissivi@es based on 
the scaiering characteris@cs of coal ashes. These characteris@cs are determined from the op@cal 
proper@es of ash par@cles for which we have implemented models based on the works of D. 
Goodwin  and J. Ebert . The algorithm uses different correla@ons at specific wavelengths to 1 2

compute the complex index of refrac@ons based on a large data-set of measurements. The index 
of refrac@on would be used to compute absorp@on, scaiering and ex@nc@on proper@es for the 
par@cles via Mie Theory calcula@ons  (Bohren & Huffman, 2008 for single scaierers. In general, 3

Discrete Ordinates (DO) is the more correct way to compute par@cle emiiance, but 
approxima@ons were made due to the expensiveness of these computa@ons .  The spectral and 4

total emissivity are given by: 

�  

�  

�  

Where (ω) is the albedo of scaier, (g) is the asymmetry parameter, (Qi) are the scaiering and 
ex@nc@on efficiencies. In the limit where the surfaces are smooth and reflec@ng (molten slags, 

glassy slags) a different expression is used to calculate the spectral emissivity
 
(also known as 

Fresnel emissivity); the expression is given by: 

�  

	Goodwin,	D.G.,	1986.	Infrared	Op0cal	Constants	of	Coal	Slags.	s.l.:	Stanford	University.1

	Ebert,	J.L.,	1994.	Infrared	Op0cal	Proper0es	of	Coal	Slag	at	High	Temperatures.	s.l.:Stanford	University.2

	Bohren,	C.F.	and	Huffman,	D.R.,	2008.	Absorp0on	and	Scaeering	of	Light	by	Small	Par0cles.	s.l.:Wiley	Science	3

Series;	John	Wiley	&	Sons.
	Bohren,	C.F.,	1987.		Mul0ple	scaeering	of	light	and	some	of	its	observable	consequences.	Am.	J.	Phys.,	Issue	55,	p.	4

524	–	533.
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Where (n) and (k) are the components of the complex index of refrac@on and the total emissivity 
is calculated by integra@ng over all wavelengths. 

It has been shown by T. Wall  that the total or hemispherical emissivity decreases with the 5

temperature up to the point where par@cle agglomera@on influences the scaiering behavior of 
the formed structure, and increase the emissivity at higher temperatures. The model that has 
been selected to represent these sintering effects is the one proposed by O. Pokunda  (Pokluda, 6

et al., 1997) which was formulated for viscous sintering and calculates the ra@o: length of the 
sintering neck to the par@cle radius between two par@cles.  

�  

The original model describes agglomera@on of two par@cles and efforts in the literature have 
added the capability to describe systems of many par@cles by considering the effect of fractal 
aggregates‑ . In this current itera@on of the sintering model, we have developed a “staging” 7
mechanism that allows par@cles to agglomerate sequen@ally, growing in size un@l only a few 
par@cles or one big par@cle remains. The process can be described more specifically in what 
follows. Assume that N number of par@cles arrive to the wall (a given computa@onal cell) and the 
agglomera@on takes place for pairs of par@cles simultaneously, once the sintering process 
between pairs finishes, the number of par@cles has reduced to half, Np/2. The newly sintered 
and grown par@cles would sinter again reducing the number of par@cles to Np/4, this process 
would go on un@l there’s no par@cles lel to sinter. Each @me the current number of par@cles 
reduces in half corresponds to a “stage” and the theore@cal, total number of stages can be 
computed as: st = log(Np)/ log(2). This process is depicted i18The concept of staging allows us to 
eliminate the coordina@on number as an uncertainty parameter and rely on the number of 
par@cles arriving to the walls, this quan@ty is beier characterized in the simula@ons. The 
equivalent diameter of the par@cles aler sintering at each stage is calculated based on the total 
surface area and the total volume of all par@cles at a given computa@onal cell:  

	Wall,	T.F.	et	al.,	1993.	The	Proper0es	and	Thermal	Effects	of	Ash	Deposits	in	Coal-fired	Furnaces.	Prog.	Energy	5

Combust.	Sci.,	Vol.	19,	pp.	487	–	504.
	Poklunda,	O.,	Bellehumeur,	C.T.	and	Machopoulos,	J.,	1997.	Modifica0on		of	Frenkel’s	Model	for	Sintering.	AICHE	J.,	6

Vol.	43,	pp.	3253-3256.
	Eggersdorfer,	M.L.,	Kadau,	D.,	Herrmann,	H.J.,	and	Pratsinis,	S.E.,	2011,	Mul0par0cle	Sintering	Dynamics:	From	7

Fractal-like	Aggregates	to	Compact	Structures.	Langmuir,	Vol.	27,	pp.	6358-6367.
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�  

where variables with the sub-index “0” denote fields (par@cle diameter and surface area) for 2 
par@cles. Variables with the sub-index “t” denote fields for the total number of par@cles in the 
computa@onal cell at a par@cular stage “st” (surface area and volume).  

Figure	17:	Sintering	process	represented	as	agglomera0on	stages.	a)	State	of	the	par0cles	arriving	to	the	
wall	and	a`er	N	stages	of	sintering.	b)	Conceptual	representa0on	of	the	staging	process	for	the	sintering	
of	par0cles	in	a).	
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Deff is the equivalent diameter of the structure at a par@cular stage st. We have applied this 
model to the sintering of the synthe@c slags, prepared by J. Boow and P.R.C. Goard .  Their work 8

outlines the most relevant behavior of slags emissivity in presence of par@cle sintering. A 
comparison of this experimental data set against our model is presented in Figure 18.  For small 
par@cles, the transi@on of emissivity where sintering takes place (1200 K - 1400 K) is rela@vely 
smooth, this is due to the greater number of sintering events (stages) required to reach a cri@cal 
size (where predic@ons of Mie theory are not as accurate). The transi@on for bigger par@cles is 
less smooth, reaching cri@cal sizes faster than small par@cles. In such cases, the total emissivity 
transi@on quickly to the emissivity of glasses, polished surfaces and melts, given by the Fresnel 
rela@onship presented previously. This is certainly an improvement over the previous model 
where a sharp transi@on was set between the emissivity at the end of the sintering stage and the 
emissivity of glasses, bright and smooth surfaces of the deposits.	

Figure	18:	Comparison	the	total	emissivity	of	a	synthe0c	slag	SA05	(5%	iron	oxide	content)	with	the	
predic0ons	of	the	proposed	model	

	Boow,J.	and	Goard,	P.R.C.,	1969,	Fireside	deposits	and	their	effect	on	heat	transfer	in	a	pulverized-fuel-fired	boiler:		8

Part	III.	The	influence	of	the	physical	characteris0cs	of	the	deposit	on	its	radiant	emieance	and	effec0ve	thermal	
conductance.	J.	Inst.	Fuel,	Vol.	42,	pp.	412-419
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Coal	Devola:liza:on	
One of the major assump@ons currently implemented in Arches is that the char and vola@le off-
gases have the same composi@on aler devola@liza@on. This is not true, since the vola@le gases 
become enriched with hydrogen, and the char becomes enriched with carbon. An extensive 
literature search was carried out to find relevant and useful data on the elemental composi@ons 
(primary organic components, CHONS) of char and tar at a variety of experimental composi@ons. 
These data were used to develop a set of correla@ons describing the elemental composi@ons of 
these devola@liza@on products as a func@on of several coal specific parameters and experimental 
condi@ons. The table below shows the sources used in the elemental composi@on correla@on 
analysis. 

Table	2:	Data	sources	used	for	elemental	composi0on	correla0ons	

Author(s) InsBtuBon Apparatus Gas	
Temperatures	(K)

Char/Tar Coal	Types

Freihaut, et al. United 
Technologies 
Research 
Center

Entrained flow 
reactor

780-1069 Tar hvA bit, sub 
C, LVB

Hambly Brigham 
Young 
University

Drop tube 
reactor

820 and 1080 Char and 
Tar

ligA, subA, 
hvCb, hvAb, 
lvb

Perry Brigham 
Young 
University

Drop tube 
reactor

895-1085 Char and 
Tar

Sub, hvb, 
mvb, lvb

Fletcher and 
Hardesty

Sandia 
Na@onal 
Laboratories

Entrained flow 
reactor

1050 Char Lig, sub, 
hvBb, hvAb, 
lvb

Wai Brigham 
Young 
University

Drop tube 
reactor

850-1050 Char and 
Tar

ligA, subC, 
hvCb, hvAb, 
lvb

Parkash Devon Coal 
Research 
Centre

Laminar, 
entrained flow, 
atmospheric 
pressure 
reactor

820-980 Char Sub B

Tyler CSIRO Heated 
fluidized bed 
reactor

873 Tar Bit, sub
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Using these data, figures were constructed to show rela@onships between the independent 
variables (such as maximum gas temperature, par@cle residence @me, parent coal composi@ons, 
etc.) and the dependent variables (normalized elemental composi@ons, i.e. Cchar/Ccoal). Figures 
19 and 20 show examples of these plots. 

One of the coal specific parameters used in the elemental correla@on analysis is parent coal 
aroma@city. Several correla@ons from the literature to describe coal aroma@city were tested 
using a dataset found from literature. Ko, et al.  developed a second order polynomial for a 9 10

limited set of aroma@city data based on the carbon content of the parent coal. Gerstein, et al.  11

used a simpler linear correla@on of � , also based on the carbon content of the parent coal. Carr 
and Williamson  developed a different correla@on to predict the apparent aroma@city based on 12

vitrinite reflectance. Maroto-Valer, et al.  proposed an updated version of a previous correla@on 13

based on the hydrogen-carbon ra@o, � . Singh and Kaka@ studied four different expressions to 
predict aroma@city.   14

The aroma@city models were evaluated on a set of data that includes elemental composi@on 
(proximate and ul@mate analysis results) and measured and calculated chemical structure 
parameters from NMR analysis. Some of these data were used by Genew et al.  to fit chemical 15

structure parameters for the CPD model. The data come from the following sources:  Genew, et 
al.22, Solum, et al.,  Hambly, et al.,7 8 Perry, et al.,9 10 Fletcher and Hardesty,11 Wai, et al.,12 13 16

fa′�

H /C

	Ko,	G.H.,	Peters,	W.A.,	Howard,	J.B.,	Correla0on	of	Tar	Yields	with	Rapid	Pyrolysis	with	Coal	Type	and	Pressure.	9

Fuel,	1987	66(8)	pp.1118-1122.
	Ko,	G.H.,	Sanchez,	D.M.,	Peters,	W.A.,	Howard,	J.B.,	Correla0ons	for	Effects	of	Coal	Type	and	Pressure	on	Tar	Yields	10

from	Rapid	Devola0liza0on.	Symposium	(Interna0onal)	on	Combus0on,	1989,	22(1)	pp.115-124.
	Gerstein,	B.C.,	Murphy,	P.D.,	Ryan,	L.M.,	Aroma0city	in	Coal,	Coal	Structure,	Meyers,	R.A.,	Ed.	Academic	Press:	11

New	York,	1982.
	Carr,	A.D.	and	Williamson,	J.E.,	The	Rela0onship	between	Aroma0city,	Vitrinite	Reflectance	and	Maceral	12

Composi0on	of	Coals:	Implica0ons	for	the	Use	of	Vitrinite	Reflectance	as	a	Matura0on	Parameter.	Org.	Geochem.	
1990,	16(1-3)	pp.	313-323.
	Maroto-Valer,	M.M.,	Andresen,	J.M.,	Snape,	C.E.,	Verifica0on	of	the	Linear	Rela0onship	between	Carbon	13

Aroma0ci0es	and	H/C	Ra0os	for	Bituminous	Coals.	Fuel,	1998,	77(7)	pp.783-785.
	Singh,	K.P.	and	Kaka0,	M.C.,	Comprehensive	Models	for	Predic0ng	Aroma0city	of	Coals.	Chem.	Eng.	Commun.,	14

2003,	190(10)	pp.	1335-1347.
	Geneu,	D.,	Fletcher,	T.H.,	and	Pugmire,	R.J.,	Development	and	Applica0on	of	a	Correla0on	of	C-13	NMR	Chemical	15

Structural	Analyses	of	Coal	Based	on	Elemental	Composi0on	and	Vola0le	Maeer	Content.	Energy	Fuels,	1999,	13(1)	
pp.	60-68.
	Solum,M.S.,	Pugmire,	R.J.,	and	Grant,	D.M.,	C-13	Solid-State	NMR	of	Argonne	Premium	Coals.	Energy	Fuels,	1989,	16

3(2):	pp.87-193.
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Gerschel and Schmidt,  Cui, et al.,  Ahmed, et al,  Lin, et al.,  Suggate and Dickinson,  and 17 18 19 20 21

Zhang, et al.   22

The seven literature correla@ons were tested against a comprehensive set of data in two ways:  
first by using the provided coefficients, and second by re-fiwng the coefficients using the same 
dataset. Predic@ons made using the re-fit coefficients performed beier than the originals, and 
are shown along with a new proposed model in Figure 21. 

�  
Figure	19:	Experimentally	determined	normalized	elemental	mass	frac0ons	in	the	char	compared	to	the	
parent	coal	mass	frac0on,	from	each	reference	used.	
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 Perry, et al
 Fletcher & Hardesty
 Watt, et al
 Parkash

	Gerschel,	H.,	Schmidt,	M.,	Modelling	the	Rela0onship	between	Carbon	Aroma0city	of	Lignite	Pyrolysis	Chars	and	17

the	Process	Temperature	with	Petrographic	Parameters.	Int.	J.	Oil	Gas	Coal	Technol.	2016,	11(3)	pp.290-307.
	Cui,	X.,	Yan,	H.,	Zhao,	P.,	Yang,	Y.,	Xie	Y.,	Modelling	of	Molecular	and	Proper0es	of	Anthracite	Base	on	Structural	18

Accuracy	Iden0fica0on	Methods.	Journal	of	Molecular	Structure.	2019,	1183	pp.	313-323.
	Ahmed,	M.A.,	Blesa,	M.J.,	Juan,	R.,	Vandenberghe,	R.E.,	Characteriza0on	of	an	Egyp0an	Coal	by	Mossbauer	and	19

Ft-Ir	Spectroscopy.	Fuel	2003,	82(14)	pp.1825-1829.
	Lin,	H.L.,	Li,	K.J.,	Zhang,	X.W.,	Wang,	H.X.,	Structure	Characteriza0on	and	Model	Construc0on	of	Indonesian	20

Brown	Coal.	Energy	Fuels,	2016,	30(5)	pp.	3809-3814.
	Suggate,	R.P.,	Dickinson,	W.W.,	Carbon	NMR	of	Coals:	The	Effects	of	Coal	Type	and	Rank.	Int.	J.	Coal	Geol.2004,	21

57(1)	pp.	1-22.
	Zhang,	P.Z.,	Li,	L.Y.,	Ye,	C.H.,	Solid	State	C-13	NMR	Study	of	Chinese	Coals.	Fuel	Sci.	Technol.	Int.,	1995,	13(4)	pp.	22

467-481.
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�  
Figure	20:	Experimentally	determined	normalized	elemental	mass	frac0ons	in	the	tar	compared	to	the	
parent	coal	carbon	mass	frac0on,	from	each	reference	used.	

�  
  
Figure	21:	Parity	rela0onship	of	seven	aroma0city	correla0ons	from	literature	and	a	newly	proposed	
aroma0city	correla0on	(orange	squares).	
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The best of the literature models was Singh and Kaka@’s second and third correla@ons (light blue 
triangles in the second row and third column of Figure 21 and dark blue diamonds in the boiom 
row and first column, respec@vely). The proposed model did even beier. 

�  

Using the proposed aroma@city correla@on and the experimental data from the sources in the 
table, an extensive uncertainty quan@fica@on analysis is currently being pursued to develop 
comprehensive correla@ons describing the major elemental composi@ons (CHONS) in the char 
and the tar. There are several different approaches to quan@fy uncertainty, including Bayesian 
sta@s@cs, cross valida@on, rela@ve uncertainty using L1, L2, and infinity norms, and other similar 
approaches. Each approach has unique advantages and disadvantages. The goal of the sta@s@cal 
analysis is to find not only an overall uncertainty, but to find the uncertainty at each experimental 
condi@on. A journal ar@cle is in progress containing the details of the aroma@city correla@ons and 
the elemental composi@on correla@ons. 

Soot	in	Coal	Flames	
Three approaches to modeling tar and soot forma@on in coal combus@on systems were 
evaluated. The first approach (case	A) used the empirical Brown-Fletcher tar and soot model and 
assumed soot is carbon and tar is C10H10. Case	A is used as the standard of comparison as soot is 
known to be depleted in hydrogen compared to tar. The second approach (case	B) also used the 
Brown-Fletcher tar and soot model, but assumed soot and tar are both C10H10. The mo@va@on for 
assuming tar and soot are both C10H10 is that the product composi@on of tar and soot reac@ons 
can be parameterized by a single stream, which is advantageous when considering a mixture 
frac@on-based chemistry mode, while adequate parameteriza@on of tar and soot reac@on 
products for case	A requires three streams. The third modeling approach did not u@lize a model 
for soot forma@on and used C2H2 as a “tar surrogate” instead. 

Comparison of the three approaches was carried out by simula@on of a turbulent coal 
combus@on with the One-Dimensional Turbulence code. High fidelity models were used for 
chemical kine@cs and devola@liza@on, while char combus@on was neglected. We found that peak 
temperatures calculated for cases B and C	were similar to case A, and that the predicted behavior 
of gas phase quan@@es with respect to equivalence ra@o for case A	was shiled towards an 
equivalence of zero for lean condi@ons. Predicted par@cle temperature and coal vola@les 
remaining for case B were nearly iden@cal to case A values, while case C predicted complete 
deple@on of coal at an earlier residence @me than cases A	and B. Overall, we found that 
assuming that soot has the same stoichiometry as tar was reasonable. Addi@onally, a	priori	
flamelet reconstruc@ons of various gas phase quan@@es were compared to finite-rate 
calcula@ons for cases A,	B, and C. Flamelet reconstruc@ons of O2 mass frac@on and gas 
temperature proved to be very accurate for cases B	and C,	while reconstruc@ons for case A	

f ′ �a = 4.384 − 8.679 ⋅ 10−2 ⋅ XC + 5.352 ⋅ 10−4 ⋅ X2
C + 2.601 ⋅ 10−2 ⋅ XH − 6.879 ⋅ 10−3 ⋅ X2

H + 3.525 ⋅ 10−3 ⋅ XO − 5.710 ⋅ 10−4 ⋅ X2
O − 2.666 ⋅ 10−3 ⋅ XVM + 5.659 ⋅ 10−6 ⋅ X2

VM

�28



exhibited decreased accuracy in fuel lean condi@ons for O2 and fuel rich condi@ons for gas 
temperature. 

Our efforts in soot forma@on modeling have focused on the development, implementa@on, and 
tes@ng of a physics-based soot model for coal combus@on in oxy-coal environments. Previous 
models, such as the Brown and Fletcher model, while robust and easy to implement, are largely 
empirical, making it difficult to apply the models to oxy-coal condi@ons with confidence in the 
accuracy and performance of the model.  

We have developed detailed and reduced soot models. The detailed model considers soot 
forma@on from tar species that are evolved during coal devola@liza@on. The tar size distribu@on 
is represented using a sec@onal model with nine sec@ons. The soot par@cle size distribu@on is 
represented with the method of moments with interpola@ve closure (MOMIC).  Six sec@ons 23

were used. In addi@on, an addi@onal “d” moment was included to model par@cle aggrega@on.  24

Soot is formed from tar combina@on via coagula@on; soot growth proceeds via collision-based tar 
deposi@on and the HACA  mechanism. Soot coagula@on and aggrega@on is included, along with 25

oxida@on and gasifica@on as have been previously reported. Tar cracking is an important 
submodel that was specially developed here by considering tar to be composed of four 
component groups: phenol, toluene, naphthalene, and benzene. The soot model was validated 
against coal experiments previously performed at BYU. The model is also applicable to biomass 
combus@on, and the model also was validated using a data set for biomass combus@on using 
three different wood species. The detailed model was published in Combus0on	and	Flame during 
this repor@ng period. 

This detailed model is fairly complex and computa@onally expensive. A significant effort has been 
underway to simplify the model. A monodisperse version was developed that u@lized the same 
physical and reac@on processes as the detailed model, but only requires three species: tar, soot 
number density, and mass frac@on. This model has been implemented in Arches and is 
undergoing tes@ng. We have submiied a paper on this model to Combus0on	Theory	and	
Modeling that is currently in review. The model was applied in Arches to biomass combus@on 
successfully. We have since been tes@ng the model under oxy-coal condi@ons. We have found 
and corrected a few errors in the monodispersed formula@on, and we are working to 
accommodate s@ffness due to fast tar coagula@on/soot nuclea@on processes that have caused 
some instabili@es.  

In addi@on, simula@ons in the OFC are being performed to quan@fy the influence of the soot on 
radia@on heat transfer, as well as sensi@vity to the specific soot models used and the coupling 

	Frenklach,M.,	Method	of	Moments	with	Interpola0ve	Closure.	Chem.	Eng.	Sci.	2002,	57(12)	pp.	2229-2239.23

	Balthasar,	M.	and	Frenklach,	M.,	Detailed	Kine0c	Modeling	of	Soot	Aggregate	Forma0on	in	Laminar	Premixed	24

Flames.	Combust.	Flame,	2005,	140(1-2)	pp.	130-145.
	Appel,	J.,	Bockhorn,	H.,	and	Frenklach,	M.,	Kine0c	Modeling	of	Soot	Forma0on	with	Detailed	Chemistry	and	25

Physics:	Laminar	Premixed	Flames	of	C2	Hydrocarbons.	Combus0on	and	Flame,	2000,	(121(1-2)	pp.	122-136.

�29



between the soot and gas phase. Soot is olen ignored in coal furnace simula@ons. These tests 
showed some unexpected soot profiles, as shown below, which shows an instantaneous profile of 
soot number density. There is a dis@nct separa@on in the profiles, a so-called “lobed” structure. 
This structure appears in the tar, soot mass, soot number density, and in the coal gas mixture 
frac@on. On inspec@on, it was found that this was due to the use of three par@cle environments 
in the coal DQMOM formula@on. The par@cles disperse to differing extents in the reactor based 
on par@cle size, and result in the three lobes shown. We have increased the number of par@cle 
environments from three to six, with significant improvements, as shown below. 

The soot number density, however, appears to be too high and this is resul@ng in soot par@cle 
sizes that are smaller than is expected. This high number corresponds to unphysically small 
par@cle sizes. We believe this is due to @mescales for tar coagula@on/soot nuclea@on that are 
much smaller than the simula@on @mestep, requiring explicit s@ffness removal. We are 
inves@ga@ng pseudo-steady state, semi-analy@c, and sub-@me-stepping methods for trea@ng this 
s@ffness.  

 

 

Figure	22:	Soot	number	density	on	a	2-D	plane	in	the	reactor.		Top:	results	with	three	par0cle	
environments;	boeom:	results	with	six	par0cle	environments.	

Large	Eddy	Simula:on	Research	
The efforts of the LES Integra@on Group for Year 5 of the PSAAP program are characterized into 
three categories; 1) Developments of the physical LES model with associated sub-models, 2) 
Verifica@on ac@vi@es along with support efforts of the VUQ simula@ons, and 3) Portability efforts 
through the adop@on of Kokkos within the Uintah Framework and the Arches component. The 
following will briefly describe Year 5 highlights within the three categories.  
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The implementa@on of the Nonlinear Large Eddy Simula@on (NLES, G. Burton) model was 
completed and demonstrated in Arches for periodic isotropic turbulence flows with decay. 
Implementa@on of a force turbulence scenario in Arches is proceeding for further tes@ng. The 
implementa@on of NLES into Arches was done with the assistance of Greg Burton, LLNL, which 
included in-person mee@ngs at Utah and at LLNL. The NLES model presents a nice contrast in 
turbulence closure to the more tradi@onal gradient diffusion models employed within Arches. In 
par@cular, NLES offers a modeling approxima@on for the fluctua@ng subgrid veloci@es, which may 
help in obtaining a beier representa@on of the drag for par@cles with low Stokes numbers. With 
the assistance of a visi@ng scholar, some a	prior studies were conducted using DNS data 
inves@ga@ng the Stokes number effects on par@cle dispersion of inert par@cles within periodic 
turbulence using diffusion-base models and no-model for par@cle drag. The model/no-model 
sensi@vi@es were demonstrated. Demonstra@on with NLES closure for the par@cle drag 
interac@ons is currently underway in the a	priori analysis. Addi@onally, studies were carried out a	
posteriori with Arches comparing the response of the par@cle energy spectra of different Stokes 
number par@cles when using the NLES subgrid velocity predictor vs. other models or no-model. 
The differences for certain classes of par@cle Stokes numbers are significant. We plan to con@nue 
to develop the NLES model and inves@gate the use of the subgrid model predictor for par@cle 
closure in turbulence flows.  

Coal combus@on in the boiler naturally has a wide range of length and @me scales. LES modeling 
of this system at the scales of interest has allowed direct representa@on of several of these 
@mescale - or at least resolu@on of a significant por@on of these scales - which allows the 
reduc@on of modeling dependency. This concept has been applied to the par@cle reac@ons, 
devola@liza@on and char oxida@on over the life@me of this project. This year it was extended to 
the NOx and CO forma@on/destruc@on reac@ons for the gas phase. The NOx work was supported 
by drop tube data obtained from Tsinghua University. The NOx model is fairly complex, involving 
a series of NOx forma@on and destruc@on reac@ons through various pathways. The drop tube 
data also included burnout data at various temperature and stoichiometric condi@ons. The data 
set in whole represents a fairly well characterized set of data. As a result, a series of LES 
simula@ons were run performing VUQ for a set of model parameters related to the NOx model 
and for the VUQ of the char oxida@on reac@ons. To this point, this work has produced an ini@al 
VUQ on the NOx model parameters. The VUQ for the char oxida@on model is currently underway 
using the drop tube data. 

The LES group also par@cipated in the development and deployment of the wall deposi@on 
model, including the conjugate wall heat transfer model. Along with this, some work was done 
on exploring various turbulence wall closures. Given the extreme scenario uncertainty with the 
geometric wall profile.  Ul@mately, we seiled on a fairly course wall closure model. This model 
was validated by comparing the LES profiles to DNS profiles of confined channel flow. Concerning 
the NLES model described above, work s@ll needs to be done to handle near wall condi@ons 
considering the wide stencil required.  
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Regarding the second category (verifica@on ac@vi@es and VUQ simula@on support), effort to 
support the produc@on runs through various bug fixes, feature addi@on, etc. was done. This work 
is fairly non-specific and varied depending on the produc@on case, but regularly involves a 
significant investment of the LES Integra@on group. Addi@onally, several verifica@on studies were 
carried out to test code correctness (e.g., overall mass balances) and numerical verifica@on of the 
various discre@za@on schemes in Arches. More specifically, Arches code ported to the Uintah-
Kokkos parallel_for expressions required complete rewrite, thus requiring code verifica@on. 
Method of manufactured solu@ons and solu@ons with known analy@cal expressions were used 
and several tests were added to the nightly regression suite. Addi@onally, tests such as periodic 
turbulence decay were used to test the set of models ported to the Uintah-Kokkos paradigm. 
Major por@ons of the new code were demonstrated to show code correctness and proper 
numerical convergence based on the various discre@za@on schemes offered.  

Finally, significant progress was made in the third category regarding adop@on of Kokkos within 
Arches. This has been a highly collabora@ve effort between the LES Integra@on and CS teams. The 
core Arches CFD algorithm was made fully ready for portability tes@ng. This includes turbulence 
closure and Eulerian par@cle transport. Although several coal models s@ll require por@ng into the 
Arches/Uintah/Kokkos abstrac@on, the most heavy-weight of them (Char Oxida@on) was ported 
and extensively tested by the CS team and lessons learned were communicated between the CS 
and Physics group. Arches was demonstrated to run fully on the GPU within the Kokkos 
constructs. As the linear hypre solver for pressure does not offer a portable solu@on, an 
implementa@on of a precondi@oned conjugate gradient method was implemented as part of this 
effort. This linear solver is useful for demonstra@on purposes but isn’t terribly performant. 
Currently, there are no plans to op@mize this solver. Although the portability demonstra@ons over 
the past year are encouraging, next year will require work to demonstrate performant portability 
of the en@re CFD algorithm with par@cle combus@on.  
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VALIDATION/UNCERTAINTY	QUANTIFICATION	
Valida:ng	Char	Oxida:on	Models	
Early in 2019, we examined an updated char model developed by Salvatore Iavarone. This new 
model differed from the previous itera@on in a few ways. First, the ini@al frac@on of char joined 
the ini@al par@cle diameter as an addi@onal random quan@ty in the physical model. Second, the 
prior bounds on the uncertain parameters were narrowed. Third, the experimental bounds were 
slightly widened. A bound-to-bound data collabora@on (B2BDC) analysis with quadra@c surrogate 
models (and appropriate fiwng error characteriza@on) determined the dataset to be consistent. 
If the original experimental bounds were instead used, the dataset could be made consistent by 
removing 2 of the 399 quan@@es of interest.    

Model	discrepancy	in	B2BDC	
We are currently inves@ga@ng a new solu@on method to inconsistent datasets by adding a 
scenario-dependent discrepancy term to model outputs. The addi@on of this term is well 
mo@vated when we believe the inconsistency is due to an inadequate model rather than mis-
specified experimental bounds. The general framework follows the Kennedy and O’Hagan 
structure , but the implementa@on in Bound-to-Bound Data Collabora@on (B2BDC) leads to 26

different interpreta@ons, considera@ons, and consequences. The discrepancy takes the form of a 
linear combina@on of basic func@ons depending only on the scenario parameters. This structure 
leads to an extended feasible set in the space defined by the uncertain model parameters and 
discrepancy coefficients. In this context, predic@on is performed with respect to the extended 
space. 

Our current work is focused on developing this modified framework and examining the 
methodology with various discrepancy func@ons. For instance, polynomial discrepancy func@ons 
with different degrees were tested in both a toy mass-spring example and a realis@c hydrogen 
combus@on example. Preliminary results demonstrate the proposed method can always resolve 
dataset inconsistency when enough basis func@ons are included, but may suffer expanded 
predic@on intervals. Comparing different choices of basic func@ons that resolve dataset 
inconsistency is s@ll a very difficult and complex task and is the subject of future study. A 
manuscript summarizing this work is in prepara@on. 

Uniform	Sampling	to	the	Feasible	Set	
We con@nued and finalized our analysis on evalua@ng the performance of applying the 
developed MCMC sampler within B2BDC to uniformly sample the feasible set. A strategy of 
alloca@ng ini@al points employing op@miza@on techniques showed good performance ensuring 
the over-dispersion condi@on of model parameters. In our test case, the developed sampler 
outperforms a Metropolis-Has@ngs sampler and an adap@ve Metropolis sampler by displaying a 
larger step size and faster mixing. Uniform samples generated within the GRI-Mech dataset 
provide valuable complementary informa@on to the determinis@c bounds of feasible set and 

	Marc	C	Kenedy	and	Anthony	O’Hagan.	Bayesian	calibra0on	of	computer	models.	Journal	of	the	Royal	Sta0s0cal	26

Society:	Series	B	(Sta0s0cal	Methodology),2001,	63(3):425-464.			doi:10.1111/1467-9868.0029
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predic@ons, offering a promising hybrid framework for uncertainty quan@fica@on. A manuscript 
summarizing this work is in prepara@on. 

Linear	Surrogate	Models	for	Quadra:c	Ground	Truth	
In most applica@ons of our tools, we fit quadra@c or polynomial models to an underlying 
simula@on or computer code using random samples. The accuracy of the fit can be es@mated by 
separa@ng the samples into training and test data, and the error can be absorbed into both 
consistency and predic@on analyses. Different realiza@ons of the random sample, however, can 
result in different surrogate models, which in turn results in different datasets and consistency 
measures. We are currently inves@ga@ng how this sample-to-sample variability manifests when 
fiwng linear surrogate models and datasets to approximate a collec@on of ground truth quadra@c 
models. This scenario emulates the realis@c case where the surrogate cannot capture all aspects 
of the underlying simula@on. Our experiments with both the GRI-Mech and DLR datasets 
demonstrate that the sample-to-sample variability can produce non-negligible varia@on in the 
computed consistency measure. Fortunately, in both examples the conclusion of consistency vs. 
inconsistency is not significantly affected.    

Inclusion	of	Ellipsoidal	Constraints	and	Addi:onal	Criteria	
In some cases, we may wish to include quan@@es of interest that are poorly represented by 
quadra@c, ra@onal quadra@c or polynomial surrogate models in a dataset. This could also include 
alternate feasibility criteria, such as the no@on of implausibility associated with Bayesian history 
matching. We are currently inves@ga@ng the inclusion of sample-based feasibility assessments 
through the calcula@on of minimum volume covering ellipsoids. Importantly, this can be 
immediately implemented using the current B2BDC computa@onal strategies (i.e., formula@ng 
semidefinite programs) as ellipsoids are represented through quadra@c inequali@es. We are also 
inves@ga@ng the inclusion of addi@onal constraints derived through support vector machines 
with degree two polynomial kernels. 

Verifica:on	and	Uncertainty	Quan:fica:on	of	the	BSF:	
Test of surrogate models:  The general assump@on that allows us to use the current 
mathema@cal form of the Bayesian methodology used in the Center’s work, is that of linear 
surrogate models. This greatly simplifies the numerical treatment and streamlines the analysis for 
rapid results. This also means that some of the non-lineari@es of the system might not be 
captured by the current surrogates. Introduc@on of non-linear surrogates might circumvent this 
issue. New analysis developed by the VUQ team, incorpora@ng these changes were tested by 
running addi@onal simula@ons for a new posterior from the previous analysis. Table 3 relates the 
total number of cases used to test non-linear surrogate models, and Figure 23 (Predic@ve 
posterior for the temperature, oxygen concentra@on and heat flux) shows the predic@ve 
posteriors for the BSF QOI’s. 

IU Map and new simula@on cycle: The informa@on obtained from previous VUQ cycles is 
extremely useful to update models and input parameters. The informa@on gathered has been 
used to propose an input/uncertainty map (IU map) that relates the current values of the model/
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scenario parameters with their rela@ve importance. This informa@on is presented in Table 4. 
Some of the cases rated as 5 are being currently run in the available computa@onal resources.  

Table	3:	Cases	and	input	parameters	used	to	test	non-linear	surrogate	models	

ThardB CO2_PC1 CO2_PC2 O2_PC1 O2_PC2 AbsCD log(Kdeposit) devolTmu ln(Avisc) Tslag log(enam) Csmag tSootBlow

min. val. 1750 -2.0 -4.0 -2.2 -1.3 0.80 -1.20 735 -54.7 1471 -4.70 0.05 1.2

max. val. 1950 5.0 4.0 2.2 3.0 1.90 1.20 930 -30.0 1549 -1.80 0.40 8.8

Case_1 1850 0.0 0.0 0.0 0.0 1.00 0.00 832 -54.7 1510 -3.00 0.20 5.0

Case_2 1850 1.3 0.0 0.0 0.0 1.00 0.00 832 -34.2 1510 -3.00 0.20 5.0

Case_3 1850 0.0 1.3 0.0 0.0 1.00 0.00 832 -34.2 1510 -3.00 0.20 5.0

Case_4 1850 0.0 0.0 1.3 0.0 1.00 0.00 832 -34.2 1510 -3.00 0.20 5.0

Case_5 1850 0.0 0.0 0.0 1.3 1.00 0.00 832 -34.2 1510 -3.00 0.20 5.0

Case_6 1850 0.0 0.0 0.0 0.0 1.00 0.00 832 -34.2 1510 -3.00 0.20 8.8

Case_7 1980 0.0 0.0 0.0 0.0 1.00 0.00 832 -34.2 1510 -3.00 0.20 5.0

Case_8 1850 0.0 0.0 0.0 0.0 1.00 0.00 832 -34.2 1549 -3.00 0.20 5.0

Case_9 1850 0.0 0.0 0.0 0.0 1.20 0.00 832 -34.2 1510 -3.00 0.20 5.0

Case_10 1850 0.0 0.0 0.0 0.0 1.00 0.00 832 -34.2 1510 -2.35 0.20 5.0

Case_11 1850 0.0 0.0 0.0 0.0 1.00 0.39 832 -34.2 1510 -3.00 0.20 5.0

Case_12 1850 0.0 0.0 0.0 0.0 1.00 0.00 930 -34.2 1510 -3.00 0.20 5.0

Case_13 1850 0.0 0.0 0.0 0.0 1.00 0.00 930 -34.2 1510 -3.00 0.33 5.0

Case_14 1850 0.0 0.0 0.0 0.0 1.00 0.00 832 -38.8 1510 -3.00 0.20 5.0

Case_15 1750 0.0 0.0 0.0 0.0 0.81 0.00 734 -34.2 1471 -3.65 0.07 1.2

Case_16 1750 -1.3 -1.3 -1.3 -1.3 0.81 -0.39 734 -38.8 1471 -3.65 0.07 1.2

Case_17 1859.42 3.73 -3.59 -0.80 1.14 1.61 -0.71 820.71 -35.46 1518.62 -3.76 0.11 7.22

Case_18 1861.05 2.91 3.59 -1.10 1.74 1.80 -0.86 843.29 -36.64 1516.05 -4.27 0.05 3.85

Case_19 1863.04 3.26 1.91 2.07 1.60 0.64 0.71 818.36 -32.44 1503.95 -1.95 0.30 7.68

Case_20 1836.96 1.60 2.26 -1.57 1.04 0.50 -0.61 841.57 -30.33 1502.86 -2.11 0.14 2.32

Case_21 1829.30 2.39 -1.91 1.10 2.87 1.43 -0.52 838.94 -31.25 1501.38 -3.89 0.12 3.64

Case_22 1865.74 2.63 -1.39 -2.07 2.37 1.50 0.86 825.06 -35.70 1504.84 -2.24 0.10 3.12

Case_23 1840.58 2.17 -1.63 -0.94 2.10 0.20 1.13 826.16 -32.13 1515.16 -4.67 0.35 6.88

Case_24 1834.26 1.97 2.73 -1.30 1.47 0.69 -1.13 822.43 -36.27 1506.31 -4.05 0.40 3.40

Case_25 1841.99 4.59 -2.26 1.57 1.90 0.57 0.61 840.16 -35.96 1505.61 -1.73 0.29 6.60

Base_Case 1850 0.0 0.0 0.0 0.0 1.00 0.00 832 -34.2 1510 -3.00 0.20 5.0
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Figure	23:	Predic0ve	posterior	for	the	temperature,	oxygen	concentra0on	and	heat	flux	

Table	4:		Input/Uncertainty	map	(IU	map)	for	model	and	scenario	parameters	

Parameters	(H) 	 Nominal	Value Uncertainty Up	Corner Down	Corner Importance

abs_Coef 0.636053693 0.24806094 0.884114633 0.387992753 3

PC1_O2  -1.83158207 -0.714317007 -2.545899078 -1.11726506

PC2_O2  1.089131019 0.424761097 1.513892116 0.664369922

Ae O2 2.021644437 0.590395073 6.92256155 5

Ea O2 11202.51147 7588.908543 14816.1144 5

PC1_CO2  2.00337885 0.781317751 2.784696601 1.222061098

PC2_CO2  -0.183367821 -0.07151345 -0.254881271 -0.11185437

Ae CO2 2054.992846 2666.597056 1583.664689 5

Ea CO2 63805.90996 69935.02124 57676.79868 5

ksi 0.97266 0.3793374 1.3519974 0.5933226 5

Relaxa@on coeff 0.005 0.05 0.001 5

k_ash_sigma -0.277707214 -0.277707214 -0.27770721 5

T_hardened 1950.06337 380.2623572 2330.325727 1569.801013 4

v_hit 0.6202 0.241878 0.862078 0.378322 5

T_devol T_mu 832 216.32 1048.32 615.68 5
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Verifica:on	and	Uncertainty	Quan:fica:on	of	the	L1500	
Our major focus this year was the detailed budge@ng and test planning for a final L1500 test 
campaign with improved methods for collec@ng and analyzing combus@on data in support of the 
simula@ons. First, we designed an ash deposi@on probe. Based on the analysis of simula@on 
results from prior years, we iden@fied the ash deposit characteris@cs as the main quan@@es of 
interest (QOIs) for the L1500 brick. However, during the 2016 campaign, liile ash was collected 
on the heat transfer surfaces, probably due to the low hot-side metal temperature of the cooling 
panels. Therefore, we designed an ash deposi@on probe such that the hot-side temperatures 
would be similar to water wall temperatures in a boiler (and sufficiently high to collect ash). We 
used both RANS and LES simula@ons to prototype detailed representa@ons of circular and square 

T_devol T_sig 134.6493799 189.4000451 79.89871477 5

SgO 1010.8 394.212 1405.012 616.588 5

porosity 0.6 0.7 0.35 5

ash fluid temperature T_hemi

ash fluid temperature T_sol

ash fluid temperature T_fluid 1510 196.3 1706.3 1313.7 4

viscosity pre-exp. factor 1.40E-15 1.78164E-18 1.10519E-12 5

ln(viscosity pre-exp) -3.42E+01 -6.67E+00 -4.09E+01 -2.75E+01

viscosity ac@va@on 
energy 49.42441876 9.637761657 59.06218041 39.7866571 5

HHV 20952.63 4085.76285 25038.39285 16866.86715 5

par@cle density 1300 253.5 1553.5 1046.5 5

par@cle ini@al void 
frac@on 0.1 0.35 0.08 5

Composi@on ND lignite German Lignite 4

Ta 19910.00 7764.90 27674.90 12145.10 4

A 2.29087E+11 3.76011E+13 1395725458 4

ln(A) 26.15736666 5.100686498 31.25805315 21.05668016

soot density 1900 370.5 2270.5 1529.5 3

par@cle thermal cond. 4 1.56 5.56 2.44 4

K_main 3.45 0.897 4.347 2.553 5

enamel thickness (mm) 3.09E-02 1.5 0.5 5

t_scale dep (s) 788836.091 432000 129600 4

Wall emissivity 0.8 0.104 0.904 0.696 4

Rad solve frequency 20 40 10 4

Angular Discre@za@on 8 16 4 4

Re_limit 10000 3900 13900 6100 4

Gas phase temporal 
scheme 2nd order 3rd order 3

opl 0.9488 0.37 1.32 0.58 3
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probe designs. We completed a suite of 282 simula@ons with 18 input parameters, including 
thickness of the ash and enamel layers; density, thermal conduc@vity, and specific heat for ash, 
enamel, and steel; and the cooling water flow rate. Based on the results of these simula@ons, we 
finalized a square probe design and created detailed CAD drawings for manufacturing. 

Second, we examined the narrow-angle radiometers in great detail, focusing on the design, 
material science of the materials of construc@on, and the electronics and data processing. Our 
goal was to develop a more physics-based radiometer instrument model and an improved 
calibra@on procedure. We are in the process of refining our new instrument model, which we will 
present in our Q1 report for Year 6. The millivolt signal output of the radiometers is propor@onal 
to the intensity of the radia@on incident on the thermopile but is also affected by the ambient 
temperature of the thermopile itself. We calibrated all four narrow-angle radiometers in the 
temperature range from 600-2200oC using a black body radia@on source. We then created a 
simple regression of the calibra@on data taken near the ambient temperature of opera@on during 
the campaign. Figure 8 shows the intensity of the flame as measured by the radiometers with 
this calibra@on for a 45-minute window on the morning of November 13, 2018. We will present 
this analysis at the Clearwater Clean Energy Conference in June 2019. We also calibrated the view 
angle for all four narrow-angle radiometers. The view angles range from 0.7-1.06°. On the 
simula@on side, we have modified the discrete ordinates radia@on model to compute narrow-
angle intensi@es that are aligned with the coordinate axes since the three narrow-angle 
radiometers mounted in the L1500 were aligned with one axis and perpendicular to the other 
two. The orthogonal sweeps are saved in the middle of the intensity array.  For example, if you 
use SN8, this suggests 80 sweeps, but orthogonal sweeps will run 8 extra sweeps for a total of 88 
sweeps. This means that sweeps 0-9 are 10 standard x+y+z+ octant direc@ons with #10 (the 11th 
element) being an orthogonal sweep. This change was recently implemented, so we will report 
results in the Q1 report for Year 6. 

Third, we determined the volumetric flow rate of gas sampled by both a high-velocity 
thermocouple (suc@on pyrometer) and a gas sampling probe. We aiached a large plas@c bag 
over the sampling end of the probe, filled the bag with air, and measured the diameter and 
length of the bag when fully inflated. Then, we aiached the inductor using house air and 
measured the @me to deflate the plas@c bag. The procedure was repeated mul@ple @mes. The 
flow rate is needed for determining the corresponding sampling volume from the simula@on. 
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Figure	24:	Intensity	data	taken	by	the	narrow-angle	radiometers	on	Nov.	13,	2018.	The	fuel	is	pulverized	
Sufco	coal	and	the	burner	swirl	seung	is	0%.	Radiometers	1,	2	and	3	are	approximately	0.6,	1.8,	and	3	m	
downstream	from	the	burner,	respec0vely.	

Due to unfortunate circumstances, the proposed L1500 test campaign was scrapped. However, 
we completed a reduced test program by leveraging a test campaign sponsored by Pacificorp on 
November 12-16, 2018. We collected data only when the L1500 was firing 100% coal (ini@al 
furnace line-out) and without burner swirl. 

Prior to the start of the campaign, we reviewed data from previous campaigns and iden@fied 
equipment changes/modifica@ons that would reduce experimental uncertainty with minimal 
capital investment. There are mul@ple water-cooled ports, panels and coils in the furnace. The 
heat removed by these surfaces needs to be well-characterized for comparison with simula@on 
output. We iden@fied the manufacturer-specified flow meter accuracy of ±15% as the greatest 
source of uncertainty in es@ma@ng heat removal. To reduce this uncertainty, we purchased and 
installed flow reducers for the flow meters, which increased their manufacturer-specified 
accuracy to ±7%. We then calibrated the flow meters on each water line (16 total) before and 
aler the campaign using a flow meter with factory-cer@fied accuracy of ±1.5%. Figure 25 shows 
calibra@on lines for a single flow meter taken before and aler the test campaign in November 
2018. The data points have a strong linear regression and are very similar between dates, which 
would indicate that flow meter opera@on remained stable throughout the campaign. 
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Figure	25:	Calibra0on	lines	for	the	flow	meter	on	the	second	heat	flux	panel	from	the	burner	on	the	north	
side	of	the	L1500	furnace.	

Because of geometric limita@ons of the experimental setup, we did not meet manufacturer’s 
requirements for proper installa@on. Therefore, we performed addi@onal calibra@on procedures 
to quan@fy these effects, including installa@on of two flow meters in a series. 

We also collected from the walls and ceiling of the L1500 along its length. The emiiance of these 
deposits will be characterized as a func@on of temperature. We presented emiiance data as a 
func@on of temperature (up to 1000 °C) for L1500 coal ash. An apparatus to measure emiiance 
data at even higher temperatures is in the final stages of fabrica@on. 

We ran a suite of simula@ons of the November 2018 experiments to determine sensi@vity of the 
QOIs to various parameters including the frequency of the discrete ordina@on radia@on model 
solve, the use of a spectral model or the Hoiel-Sarofim model for the gas phase absorp@on 
coefficient, the relaxa@on coefficient for the wall heat transfer model, and the presence (or not) 
of a deposi@on probe. Figure 26 shows a comparison of heat flux measured at four loca@ons on 
the two water-cooled panels (south side of the L1500) for several of these variants. There is 
some sensi@vity to all of these factors, but we need to op@mize for efficiency and accuracy; for 
example, it takes longer to run a case with relaxa@on coefficient of 0.05 than 0.1. Before we do 
this op@miza@on, we need to finish the Bayesian analysis of our experimental data as detailed in 
the next paragraph. The data in this figure was generated using a tradi@onal propaga@on of error 
method and we believe that our new Bayesian analysis will more accurately capture both the 
mode and the uncertainty of the data. 
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Figure	26:	Comparison	of	heat	flux	data	on	the	south	side	of	the	L1500	furnace	from	both	simula0ons	
and	the	November	2018	experimental	campaign.	

Several members of the L1500 team took a short course on uncertainty quan@fica@on offered by 
CCMSC personnel (Prof. Sean Smith and Prof. Phil Smith). This rigorous course, which focuses on 
Bayesian methods, has transformed the lens through which our L1500 team analyzes the data. 
We have developed new instrument models for both radia@on intensity (narrow-angle 
radiometers) and heat flux (water-cooled panels and mul@-depth thermocouples in those panels) 
measurements in the L1500.  
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