# Modeling Soot in Coal Systems

Alexander J. Josephson Thomas H. Fletcher David O. Lignell

10<sup>th</sup> U.S. National Combustion Meeting 23 April - 26 April, 2017 University of Maryland, College Park, Maryland



# Acknowledgements

 This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002375



• Project work is a tri-university effort with support from the University of Utah, Brigham Young University, and University of California- Berkeley





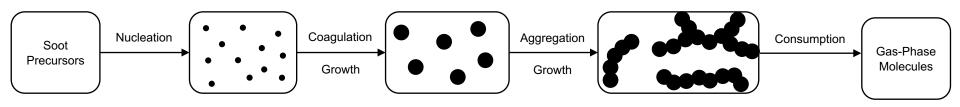


• Project oversite and guidance is provided from three national labs: Lawrence Livermore, Sandia, and Los Alamos National Laboratories





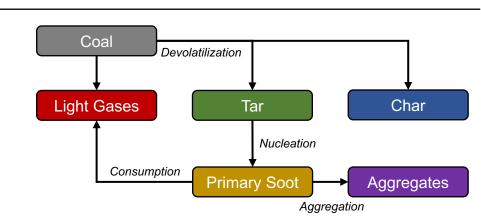



### Introduction



#### Soot

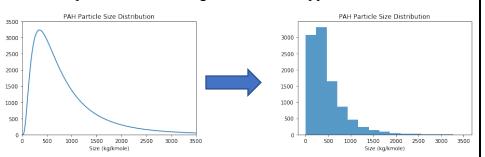
- Particles heavily impact radiative heat transfer
- Changes flame chemistry
- Health and environmental impacts


#### Gaseous Fuels



- Rate largely determined by formation of precursors and time in fuel-rich environment
- Soot precursors are PAHs

### Solid Fuels


- Coal gives off tar during primary pyrolysis
- Tar is primary soot precursor



### Model Overview

#### PAH Molecules

• Transport PAH PSD using a discrete bin approach



- Bin sizes determined by CPD model (~6 bins)
- Transport includes 4 source terms:
  - PAH creation
  - Surface Reactions
  - Thermal Cracking
  - Soot Nucleation

Bin Species Number Density

$$\frac{\delta \overline{\rho} N_i}{\delta t} + \nabla \cdot (\overline{\rho} \tilde{v} N_i) + \nabla \cdot \left( \overline{\rho} \widetilde{v''} N_i'' \right) = S_{N_i}$$

$$S_{N_i} = r_{create} + r_{growth} - r_{crack} - r_{nucl}$$

#### **Soot Particles**

Transport soot PSD using method of moments

$$M_r = \int_0^\infty m_i^r N_i(m) dm$$

• Interpolative closure for source terms

$$M_p = L_p \left( M_0, M_1, ... M_r \right)$$

- Transport includes 3 source terms:
  - Soot Nucleation
  - Particle Coagulation
  - Surface Reactions

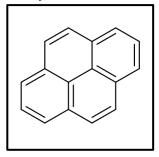
#### **PSD Moment Density**

$$\frac{\delta \overline{\rho} M_r}{\delta t} + \nabla \cdot (\overline{\rho} \tilde{v} M_r) + \nabla \cdot \left( \overline{\rho} \tilde{v}'' M_r'' \right) = S_{M_r}$$

$$S_{M_r} = r_{nucl} + r_{growth} + r_{coag} - r_{consume}$$

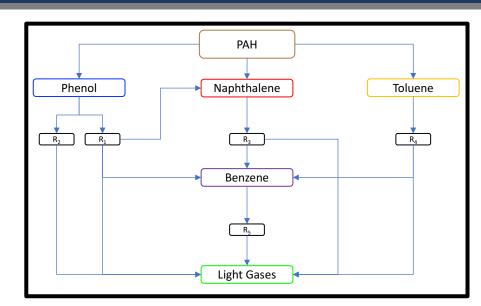
### PAH Model - Creation

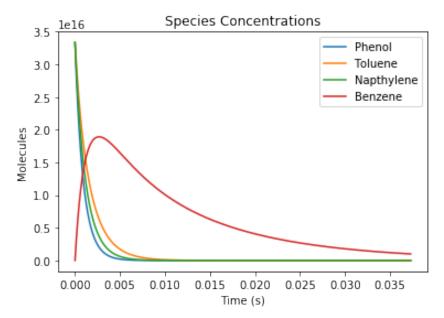
#### PAH molecules creation from two sources:


- 1. Release of tar molecules by parent fuel
  - Rate determined from results of CPD model (Fletcher, 1992)
  - PSD spans broad range ( $\sim$ 150 kg/kmole 3000 kg/kmole)
  - Lognormal PSD (median ~350 kg/kmole, small variance)
    - Varies over time, shifts to higher MWs.

#### Hypothetical Tar Molecule

$$H_3$$
C  $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$ 


- 2. Formation of aromatic rings from the gas-phase
  - Rate determined by ABF mechanism (Appel, 2000)
  - Creation of pyrene added to the PAH bins
  - Usually insignificant source of PAH (But not always, Zeng, 2011)


#### Pyrene Molecule



# PAH Model – Thermal Cracking

- Thermal cracking scheme originates from work done by Marias, et al (2016)
- Four types of PAH molecules
- Cracking reactions determine amount of mass lost
- Initial fraction estimation done
  - Maximum tar concentration used
  - Equal parts phenol, naphthalene, and toluene
  - Phenol and toluene branches established by CNMR and Elemental analyses of parent coal
  - Cracking scheme applied over time with soot nucleation until 99% PAH consumed
  - Average species fraction computed and used as constants over long simulation





### PAH/Soot Model – Soot Formation

Based on work presented in *Soot Formation in Combustion* (Bockhorn 1991)

Change in PAH species

$$r_i = \sum_{i=i_0}^{\infty} \beta_{i,j} N_i^{PAH} N_j^{PAH}$$

Change in soot moments

$$r_r = \sum_{i=i_0}^{\infty} \sum_{j=i}^{\infty} \beta_{i,j} (m_i + m_j)^r N_i^{PAH} N_j^{PAH}$$

 $\beta$  represents the frequency of collision between different PAH molecules computed using the kinetic theory of gases.

## PAH/Soot Model – Gas Phase Kinetics

#### Three major types of mechanisms:

- 1. Surface Growth, accomplished through HACA (Frenklach, 1994)
- 2. PAH deposition onto a soot particle surface (Frenklach, 1991)

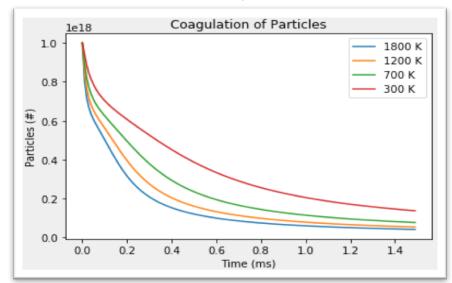
3. Consumption, through oxidation or gasification

$$r_{consume} = r_{oxi} + r_{gas}$$

$$r_{oxi} = \frac{1}{T^{1/2}} \left( A_{O_2} P_{O_2} \exp\left[\frac{-E_{O_2}}{RT}\right] + A_{OH} P_{OH} \right) \qquad r_{gas} = A_{CO_2} P_{CO_2}^{1/2} T^2 \exp\left[\frac{-E_{CO_2}}{RT}\right] + A_{H_2O} P_{H_2O}^{1.21} T^{-1/2} \exp\left[\frac{-E_{H_2O}}{RT}\right]$$

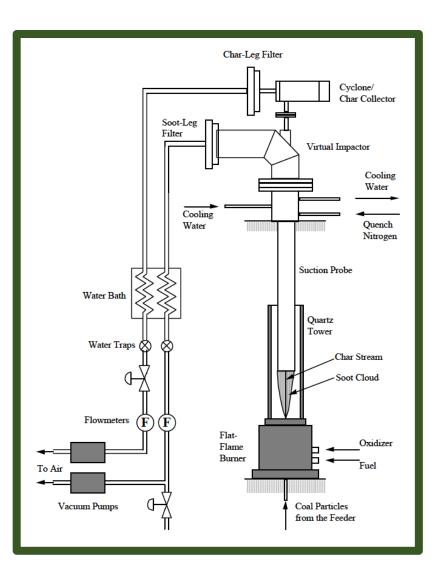
# Soot Model – Coagulation

- Based on work done by Frenklach (Frenklach 2002)
- Knudsen number defines continuum vs free molecular


$$Kn = 2\lambda_f/d$$

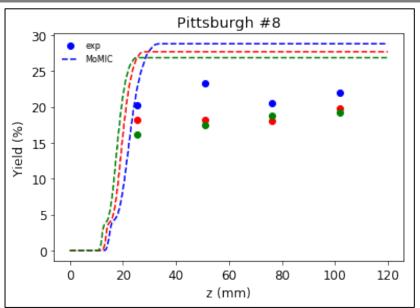
$$Kn = 2\lambda_f/d$$
 
$$G_r = \frac{G_r^f}{1 + 1/Kn} + \frac{G_r^c}{1 + Kn}$$

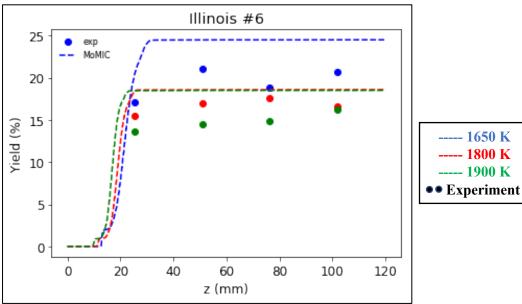
Continuum and free molecular rates are calculated as follows:

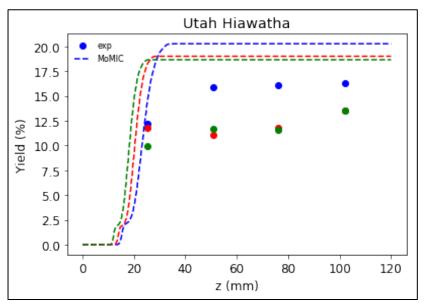

$$G_r = \frac{1}{2} \sum_{k=1}^{r-1} {r \choose k} \left( \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} m_i^k m_j^{r-k} \beta_{ij} N_i N_j \right)$$

β are calculated differently for free molecular vs continuum (Seinfeld 1998)




Note the temperature dependence

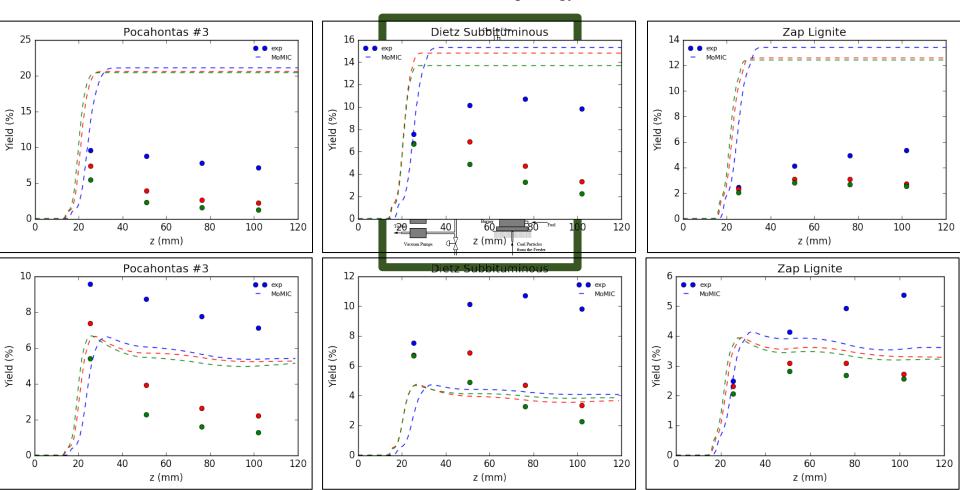

# Validation




- Experiment conducted by Jinliang Ma at BYU (Ma, 1998)
- Laminar flat flame burner
- Separation system collects soot, char and ash particles
- 6 coal types
- 3 flame temperatures
- Equilibrium chemistry profile ABF mechanism

# Validation (Soot Mass)








- Model predicts consistent results with the experimented data
- Model results 'over predict' experimental results
  - Experimental mass loses:
    - Soot not captured by suction probe
    - Deposits in collection system
    - Filter pore size 1 micron
    - Sieve loses
- Concentrations level off
  - Little to no gas phase reactions

# Validation (Particle Size)

- Better agreement with the particle sizes
- Needs some refinement
  - Morphology of the soot



### Conclusions

- Detailed model for coal-derived soot presented
- Model evaluates evolution of two species: PAH and soot
- PAH PSD- discrete bin approach
- Soot PSD- method of moments with interpolative closure
- Validation work presented with good agreement

# Ongoing Work

- Further detailing of evolving particle size in Ma's soot collection system
- Aggregate evaluation
- Application of model to biomass
- Surrogate model creation in computationally expensive systems