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Introduction

Soot

• Particles heavily impact radiative heat transfer

• Changes flame chemistry

• Health and environmental impacts

Gaseous Fuels

• Rate largely determined by formation of precursors and time in fuel-rich environment

• Soot precursors are PAHs

Soot 
Precursors

Gas-Phase 
Molecules

Nucleation Coagulation

Growth

Aggregation

Growth

Consumption

Solid Fuels

• Coal gives off tar during primary pyrolysis

• Tar is primary soot precursor
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Model Overview

PAH Molecules Soot Particles

• Transport PAH PSD using a discrete bin approach 

• Bin sizes determined by CPD model (~6 bins)

• Transport includes 4 source terms:

• PAH creation

• Surface Reactions

• Thermal Cracking

• Soot Nucleation
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• Transport soot PSD using method of moments

• Interpolative closure for source terms

• Transport includes 3 source terms:

• Soot Nucleation

• Particle Coagulation

• Surface Reactions
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PAH Model - Creation

PAH molecules creation from two sources:

1. Release of tar molecules by parent fuel

• Rate determined from results of CPD model (Fletcher, 1992)

• PSD spans broad range (~150 kg/kmole – 3000 kg/kmole)

• Lognormal PSD (median ~350 kg/kmole, small variance)

• Varies over time, shifts to higher MWs.

2. Formation of aromatic rings from the gas-phase

• Rate determined by ABF mechanism (Appel, 2000)

• Creation of pyrene added to the PAH bins

• Usually insignificant source of PAH (But not always, Zeng, 2011)
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PAH Model – Thermal Cracking
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• Thermal cracking scheme originates from work done by 
Marias, et al (2016)

• Four types of PAH molecules

• Cracking reactions determine amount of mass lost 

• Initial fraction estimation done

• Maximum tar concentration used

• Equal parts phenol, naphthalene, and toluene

• Phenol and toluene branches established by CNMR and 

Elemental analyses of parent coal

• Cracking scheme applied over time with soot nucleation 

until 99% PAH consumed

• Average species fraction computed and used as constants 

over long simulation



Change in PAH species

PAH/Soot Model – Soot Formation

Based on work presented in Soot Formation in Combustion
(Bockhorn 1991)
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b represents the frequency of collision between different PAH molecules 
computed using the kinetic theory of gases. 
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PAH/Soot Model – Gas Phase Kinetics

Three major types of mechanisms:

1. Surface Growth, accomplished through HACA (Frenklach, 1994)

2. PAH deposition onto a soot particle surface (Frenklach, 1991)

3. Consumption, through oxidation or gasification
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Soot Model – Coagulation

• Based on work done by Frenklach (Frenklach 2002)

• Knudsen number defines continuum vs free molecular

• Continuum and free molecular rates are calculated as follows:

• b are calculated differently for free molecular vs continuum (Seinfeld 1998)
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Validation

• Experiment conducted by Jinliang Ma at BYU (Ma, 1998)

• Laminar flat flame burner

• Separation system collects soot, char and ash particles

• 6 coal types

• 3 flame temperatures

• Equilibrium chemistry profile ABF mechanism



Validation (Soot Mass)

----- 1650 K
----- 1800 K
----- 1900 K

Experiment

• Model predicts consistent results with the experimented data

• Model results ’over predict’ experimental results

• Experimental mass loses:

• Soot not captured by suction probe

• Deposits in collection system

• Filter pore size 1 micron

• Sieve loses

• Concentrations level off 

• Little to no gas phase reactions



Validation (Particle Size)

• Better agreement with the particle sizes

• Needs some refinement

• Morphology of the soot



Conclusions

• Detailed model for coal-derived soot presented

• Model evaluates evolution of two species: PAH and soot

• PAH PSD- discrete bin approach

• Soot PSD- method of moments with interpolative closure

• Validation work presented with good agreement

Ongoing Work

• Further detailing  of evolving particle size in Ma’s soot collection system

• Aggregate evaluation

• Application of model to biomass

• Surrogate model creation in computationally expensive systems


