
Developing Software Frameworks for
Petascale and Beyond Using Dynamic

Graph Based Approaches – Lessons and
Achievements with Uintah

Martin Berzins

Thanks to DOE ASCI (97-10), NSF , DOE NETL+NNSA ARL
NSF , INCITE, XSEDE, James, Carter and Dan

www.uintah.utah.edu

1. Background and motivation
2. Uintah Software and Multicore Scalability
3. Runtime Systems for Heterogeneous Architectures
4. Conclusions Portability, DSLs and Kokkos

* Now in industry

Extreme Scale Research and Applications in Utah

Energetic Materials: Chuck Wight, Jacqueline Beckvermit, Joseph Peterson,
Todd Harman, Qingyu Meng NSF PetaApps 2009-2014 $1M, P.I. MB

PSAAP Clean Coal Boilers: Phil Smith (P.I.), Jeremy Thornock James Sutherland
etc Alan Humphrey John Schmidt DOE NNSA 2013-2018 $16M (MB CS lead)
Electronic Materials by Design: MB (PI) Dmitry Bedrov, Mike Kirby, Justin
Hooper, Alan Humphrey Chris Gritton, + ARL TEAM 2011-2016 $12M

202X Exascale “goal” requires 50
Petaflops per Megawatt, - not possible with
existing hardware/software approaches.

Uintah(X) Architecture Decomposition
The problem specs for some components have not changed as we have
gone from 600 to 600K cores it is the Runtime System that changed

Application Specification via
ICE MPM ARCHES or
NEBO/WASATCH DSL

Abstract task-graph program
that executes on:

Runtime System with:
asynchronous out-of-order
execution, work stealing

Overlap communication &
computation

Tasks running on cores and
accelerators

Scalable I/O via Visus PIDX

Simulation
Controller

Scheduler

Load
Balancer

Runtime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERSExascale capable
future software?

ICE is a cell-centered finite volume
method for Navier Stokes equations

Tasks define their I/O
Uintah creates graph
Data comes from
nodal warehouse via
MPI when needed
Adaptive execution

• ICE Structured Grid Variable (for Flows) are
Cell Centered Nodes, Face Centered Nodes.

• Unstructured Points (for Solids) are MPM
Particles

Uintah Patch, Variables and Task Graph

ARCHES is a combustion code using several
different radiation models and linear solvers

Uintah:MD based on Lucretius is a new molecular dynamics component

Task
Compile

Run
Time
(each

timestep)

xml

Parallel I/O

UINTAH ARCHITECTURE

Calculate Residuals
Solve Equations

RUNTIME
SYSTEM

Visus PIDX
VisIt

ARCHES or WASATCH/NEBO

The nodal task soup

Task graph structure on a multicore node with multiple patches

This is not a single graph. Multiscale and
Multi-Physics merely add flavor to the “soup”.
There are many adaptive strategies and tricks
that are used in the execution of this graph
soup.

halos halos external
halos

external
halos

Unified Heterogeneous Scheduler & Runtime node

Running CPU Task

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Running CPU Task

Running CPU Task

CPU Task Queues
Internal ready tasks

CPU Threads

Shared
Data

MPI Data
Ready

MPI sends

MPI recvs

Task
Graph

PUT

GET

GPU
Data

Warehouse

H2D
stream

D2H
stream

Running GPU Task

GPU Task Queues

Running GPU Task PUT

GET
co

m
pl

et
ed

 ta
sk

s

stream
events

GPU Kernels

GPU-enabled tasks

ready tasks GPU ready tasks

No MPI inside node, lock free DW , cores and GPUs pull work

Scalability is at least partially achieved by not
executing tasks in order e.g. AMR fluid-structure
interaction

Straight line represents given order of tasks Green X shows
when a task is actually executed.
Above the line means late execution while below the line means
early execution took place. More “late” tasks than “early” ones
as e.g.
TASKS: 1 2 3 4 5 1 4 2 3 5

Early Late execution

Summary of Scalability Improvements

(i) Move to a one MPI process per multicore node
reduces memory to less than 10% of previous for
100K+ cores

(ii) Use optimal size patches to balance overhead and
granularity 16x16x 16 to 30x30x30.

(iii) Use only one data warehouse but allow all cores
fast access to it, through the use of atomic
operations.

(iv) Prioritize tasks with the most external
communications

(v) Use out-of-order execution when possible

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of
Spanish Fork Accident 8/10/05
Speeding truck with 8000
explosive boosters each
with 2.5-5.5 lbs of explosive
overturned and caught fire
Experimental evidence for
a transition from
deflagration to detonation?

2013 Incite 200m cpu hrs

Spanish Fork
Accident

500K mesh patches
1.3 Billion mesh cells
7.8 Billion particles

At every stage when we move
to the next generation of problems
Some of the algorithms and data
structures need to be replaced .

Scalability at one level is no certain
Indicator fro problems or machines
An order of magnitude larger

MPM AMR ICE
Strong Scaling

*

Complex fluid-structure interaction problem
with adaptive mesh refinement, see SC13/14 paper
NSF funding.

Resolution B
29 Billion particles
4 Billion mesh cells
1.2 Million mesh
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray
XE6/XK7 700K+
cores

An Exascale Design Problem - Alstom Clean Coal Boilers

For 350MWe boiler problem. LES resolution
needed: 1mm per side for each computational volume = 9x 1012 cells
This is one thousand times larger than the largest problems we solve
today.

Temperature field

Prof. Phil Smith Dr Jeremy Thornock ICSE

Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes.

2.2 Trillion
DOF

Weak Scalability of Hypre Code

Linear Solves arises from Low Mach Number Navier –Stokes Equations

Use Hypre Solver from LLNL
Preconditioned Conjugate Gradients
on regular mesh patches used

Multi-grid pre-conditioner used
Careful adaptive strategies needed
to get scalability

One radiation solve
every 10 timesteps

Summary
• Layered DAG abstraction important for scaling and

for not needing to change applications code
• Scalability still requires tuning the runtime system.

Cannot develop nodal code in isolation.
• Future Portability Kokkos for rewriting legacy

applications +Wasach/Nebo DSL for new code. MIC
and GPU ongoing.

DSL Wasatch (Sutherland) gives 3-4x
speedup.
Nebo backend for CPU resulted in 20-30%
speedup in the entire Wasatch code base.
Much of the Wasatch code base is GPU-
ready next is Arches

Good GPU
scaling with
(>32^3 per
patch).Loop
fusion for
GPU kernels

Kokkos: A Layered Collection of Libraries
See [Carter Edwards and Dan Sunderland]

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, Uses

C++ template meta-programming
 Multidimensional Arrays, with a twist

 Layout mapping: multi-index (i,j,k,...) ↔
memory location, invisble touse

 Choose layout to satisfy device-specific
memory access pattern

 Good initial results on Xeon, Xeon Phi,
CPUs

	�Developing Software Frameworks for Petascale and Beyond Using Dynamic Graph Based Approaches – Lessons and Achievements with Uintah
	Slide Number 2
	Slide Number 3
	Uintah Patch, Variables and Task Graph
	
	Slide Number 6
	Unified Heterogeneous Scheduler & Runtime node
	Slide Number 8
	Summary of Scalability Improvements
	Slide Number 10
	Slide Number 11
	MPM AMR ICE Strong Scaling
	An Exascale Design Problem - Alstom Clean Coal Boilers
	Slide Number 14
	Summary

