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The Changing nature of 
Computational Science

• The need for predictive simulations
• The move towards Exascale Computing



Predictive Computational Science [Oden Karniadakis]

Science is based on subjective probability in which 
predictions must account for uncertainties in 
parameters, models, and experimental data . This 
involves many “experts” who are often wrong 

Predictive Computational Science:
Successful models are verified (codes)  and 
validated (experiments) (V&V). The uncertainty in 
computer predictions (the QoI’s)  must be quantified 
if the predictions are used in important decisions. 
(UQ)

Predictive Computational  (Materials) Science is 
changing  e.g. nano-maufacturing

“Uncertainty is an essential and non-
negotiable part of a forecast.
Quantifying  uncertainty carefully and 
explicitly is essential to scientific 
progress.” Nate Silver

We cannot  deliver 
predictive  materials by 
design over the next 
decade without 
quantifying uncertainty

Confidence interval 



2013 Titan,  Blue Gene Q - 2 Petaflops per  
MegaWatt 300K cpus 5M gpu cores h/w fault 
every 12 hours

202X Exascale “goal”         50 Petaflops per MW 
Or  20pJ per op.

Many more cores (majority on “accelerators”), 
variable Power consumption. Communication 
delays. Many more component failures. h/w fault 
every 14 mins?

Great  uncertainty in architectures probably  
accelerator-based machines that will be much 
more energy efficient.

The  Challenge for Future Software? 

Exascale also means Petascale in a cabinet 

Can we move from petascale (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 flops) to exascale (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 flops)  
computing for real engineering problems?



Clean Coal Boiler Design using 
Predictive Computational Science

• Can we help design the next generation of 
clean coal boilers?

• The CCMSC team
• The Application
• Current Simulations

Wired Magazine
BY CHARLES C. MANN 03.25.14 |
Renewables Aren’t Enough.
Clean Coal Is the Future



The team

Computer Science       Predictive  Modeling   Uncertainty Quantification        

The Exec



Taking UINTAH-X beyond petascale?

Todd            Allen                Dav John         Alan
Harman       Sanderson   de St Germain Schmidt  Humphrey

(i) UintahX Runtime System 
(ii) Wasatch Nebo Domain Specific Approach (James and Matt)
(iii)Visus PIDX and Visit Visualization (Valerio and Chuck)

Thanks to Qingyu Meng (Google) and Justin Luitjens (NVIDIA) 



Overarching Application

• high efficiency advanced ultra-
supercritical (AUSC) oxy-coal 
tangentially-fired power boiler

extreme computing
• predictive science w hybrid validation/UQ
• expensive function evaluation
• expensive data
• rapid design and deployment w Alstom

• global reach:
present in 100 countries
• 2011/12 sales:
$26.5 billion
• 93,000 employees

GE takeover in progress

ALSTOM









Existing Simulations of 
Alstom Clean coal Boilers 

For 350MWe boiler problem. LES resolution 
needed: 1mm per side for each 
computational volume = 9x 10**12 cells
This is 1000x our largest simulations on 
764K cores. - to run in  48 hours of wall 
clock time requires  50-100M fast cores.

Temperature field 

Dr Jeremy Thornock ICSE 



Existing Simulations of Alstom Clean coal 
Boilers using ARCHES in Uintah
(i) Traditional Lagrangian/RANS approaches  do not address well partile effects
(ii) LES has potential to predict oxy--‐coal flames and to  be an important design tool

(iii) LES is “like DNS” for coal

• Structured, finite-volume

• Mass, momentum, energy with radiation

• Higher-order temporal and spatial numerics

• LES closure

• Tabulated chemistry

• PDF mixing models

• DQMOM



Computational challenges at these scales

• Uncertainty quantification. How reliable is it?
• Modeling Particles
• Radiation (see last years talk for Ray Tracing).
• Solving linear systems

Strong Scaling Radiation Problem



Verification Validation Uncertainty Quantification 
State of the Art with Buoyant Helium Plume Model 

Red is experimental uncertainty

Blue is uncertainty region from simulation

Green is uncertainty in vertical velocity 
consistent with experimental data and
input parameters 

Sources:  Smith Schmidt

Turbulent combustion problem 
typical  of any real life cases, 
experiments at Sandia Labs



DQMOM Equations: Number  Density Function (NDF)
The   NDF   describes   the   number   of 
particles per volume as a function of several  particle   independent  
variables (e .g . ,   particle   diameter ,   particle composition,   etc. )   called   
internal coordinates.

Given a volume V and a set of internal coordinates ξ, the total number of 
particles in this volume is:

Julian Pedel Thesis Institute for Clean 
and Secure Energy 2014



wα number of particles per vol. assoc with node 



• Abscissas values are obtained by dividing 
weighted
abscissas by weights: problem when weights are null
• Need to know to aα and bα to transport weights and
weighted abscissas:

aα and bα are obtained by solving a linear system: Ax = B

Matrix A:
•size N(Nξ+1)
•often ill-conditioned and has to be solved in every cell

DQMOM Numerical Issues



• Demonstrate LES predictivity for 
oxy-coal applications

• Provide reference point  for high-
fidelity simulation tools 

• Provide a predictive tool for modern 
boiler design and retrofit 
applications

• Advance the heterogeneous scaling 
capabilities of Uintah Computational 
Framework

V/UQ Assessment of a Large Eddy Simulation Tool 
for Clean-Coal Technology

Images (from left to right) of large coal particle distribution, oxygen 
concentration, and temperature throughout the boiler.

• First full boiler scale simulation using high-fidelity LES with parameter variation over input 
ranges (15M cpu hrs)

• Initial validation of  LES results with experimental data  
• Performance 2X  better  for the LES capability
• First-cut demonstration of the GPU reverse Monte-Carlo for performing radiation calculations
• Scaling demonstration of the Uintah hybrid scheduler (3M) 
• GPU implementation of key pieces of the DQMOM solution process



Exascale and the 
UINTAH  FRAMEWORK



Harrod SC12: “today’s bulk synchronous (BSP), 
distributed memory, execution  model  is 
approaching an efficiency, scalability, and power 
wall.” 

Sarkar et al. “Exascale programming will require 
prioritization of critical-path and non-critical path 
tasks, adaptive directed acyclic graph scheduling of 
critical-path tasks, and adaptive rebalancing of all 
tasks…...”

“ DAG Task-based programming has always been a 
bad idea. It was a bad idea when it was introduced 
and it is a bad idea now “ Parallel Processing Award 
Winner

Vivek Sarkar’s thesis 1989 introduced many of the 
main ideas we use today. Of course everything is 
theoretically intractable see.  Sinnen “Task Scheduling 
for Parallel Systems”

The Exascale challenge for Future Software? 
Compute
-----------------
Communicate
-----------------
Compute 



Uintah(X) Architecture Decomposition
The problem specs for some components have not changed as we have 
gone from 600 to 600K cores it is the Runtime System that changed  

Application Specification via 
ICE MPM ARCHES or 
NEBO/WASATCH DSL 

Abstract task-graph program 
that executes on:

Runtime System 
with:Asynchronous out-of-order 
execution,  work stealing

Overlap communication & 
computation

Tasks running on cores and 
accelerators

Scalable I/O via Visus PIDX

Simulation
Controller

Scheduler

Load
Balancer

Runtime System 

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERS



Uintah Directed Acyclic 
(Task) Graph-Based 
Computational Framework 

Each task defines its computation with required 
inputs and outputs

Uintah uses this information to create a task graph 
of computation (nodes) + communication 
(along edges)

Tasks do not explicitly define communications but 
only what inputs they need from a data 
warehouse and which tasks need to execute 
before each other. 

Communication is overlapped with computation

Taskgraph is executed adaptively and sometimes 
out of order



Task 
Compile

Run 
Time
(each 

timestep)

xml

Parallel I/O

UINTAH ARCHITECTURE

Calculate Residuals
Solve Equations

RUNTIME  
SYSTEM

Visus PIDX
VisIt

ARCHES or WASATCH/NEBO



ICE is a cell-centered finite volume 
method for Navier Stokes equations

MPM is a novel 
method that uses 
particles and nodes
Exchange data with 
ICE, not just boundary 
condition

• Structured Grid Variable (for Flows) are Cell 
Centered Nodes, Face Centered Nodes.

• Unstructured Points (for Solids) are Particles

Uintah Patch and Variables

ARCHES is a combustion code using several 
different  radiation models and linear  solvers

Uintah:MD based on Lucretius is a new molecular dynamics component



The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches 

This is not a single graph. Multiscale and 
Multi-Physics merely add flavor to the “soup”.

halos halos external
halos

external
halos



Uintah’s Adaptive 
Meshes

• Structured Grid + Unstructured 
Points

• Patch-based Domain 
Decomposition

• Adaptive Mesh Refinement

• Dynamic Load Balancing
• Profiling + Forecasting Model
• Parallel Space Filling Curves

• Works on MPI and/or thread level
• Scales to 768K cores

The spatial mesh follows features of interest  - in 
this case a moving  container. 



Burgers Example I<Grid>
<Level>

<Box label = "1">
<lower>      [0,0,0]        </lower>
<upper>      [1.0,1.0,1.0]  </upper>
<resolution> [50,50,50]     </resolution>
<patches>    [2,2,2]        </patches>
<extraCells> [1,1,1]        </extraCells>

</Box>
</Level>

</Grid>

void  Burger::scheduleTimeAdvance( const LevelP& level, 
SchedulerP& sched)

{
…..
task->requires(Task::OldDW, u_label, Ghost::AroundNodes, 1);

task->requires(Task::OldDW, sharedState_->get_delt_label());

task->computes(u_label);
sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

}

25 cubed patches
8 patches
One level of halo elements

Get old solution from 
old data warehouse 
One level of halos
Compute new solution 



Burgers Equation code
void Burger::timeAdvance(const ProcessorGroup*,    const PatchSubset* patches,   
const MaterialSubset* matls,  DataWarehouse* old_dw, DataWarehouse* new_dw)
//Loop for all patches on this processor
{ for(int p=0;p<patches->size();p++){

//Get data from  data warehouse including 1 layer of  "ghost" nodes from 
surrounding patches
old_dw->get(u, lb_->u, matl, patch, Ghost::AroundNodes, 1);

// dt, dx Time and space increments
Vector dx = patch->getLevel()->dCell();

old_dw->get(dt, sharedState_->get_delt_label());

// allocate memory for results new_u
new_dw->allocateAndPut(new_u, lb_->u, matl, patch);

// define iterator range  l and h …… lots missing here  and Iterate through all the 
nodes

for(NodeIterator iter(l, h);!iter.done(); iter++){    
IntVector n = *iter;
double dudx = (u[n+IntVector(1,0,0)] - u[n-IntVector(1,0,0)]) /(2.0 * dx.x());
double du = - u[n] * dt * (dudx);

new_u[n]= u[n] + du;
}

0t xU UU+ =



UINTAH SCALABILITY



Summary of Scalability Improvements

(i) Move to a one MPI process per multicore node 
reduces memory to less than 10% of previous for 
100K+ cores

(ii) Use optimal  size patches to balance overhead and 
granularity 16x16x 16 to 30x30x30.

(iii) Use only one data warehouse but allow all cores 
fast access to it, through the use of atomic 
operations.

(iv) Prioritize tasks with the most external 
communications

(v) Use out-of-order execution when possible 



Select Task &
Post MPI Receives

Select Task &
Execute Task

Check Records &
Find Ready Tasks
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Weak Scaling AMR+MPM ICE
M = Mira, T=Titan,   S=Stampede     

/Proc

Only 2  
patches 
per core
Includes 
packing 
unpacking 
and data 
warehouse

Only 8 
interior 
patches 
from 32 



Deflagration wave moves at 
~400m/s  not  all explosive 
consumed. Detonation  wave 
moves 8500m/s all explosive 
consumed.

NSF funded modeling  of  
Spanish Fork Accident 8/10/05
Speeding truck with 8000 
explosive boosters each 
with 2.5-5.5 lbs of explosive 
overturned and caught fire
Experimental evidence for   
a transition from 
deflagration to detonation?



Spanish Fork 
Accident

500K mesh patches
1.3 Billion mesh cells
7.8 Billion particles

At every stage when we move
to the next generation of problems 
Some of the algorithms and data 
structures need to be replaced . 

Scalability at one level is no certain 
Indicator fro problems or machines 
An order of magnitude larger



MPM AMR ICE 
Strong Scaling 

*

Complex fluid-structure interaction problem
with adaptive mesh refinement, see SC13/14 paper
NSF funding. 

Resolution B 
29 Billion particles
4 Billion mesh cells
1.2 Million mesh 
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray 
XE6/XK7 700K+ 
cores



Solvers, EDSLs, Viz and Analysis

• Hypre Solver 
• Nebo EDSL for Uintah (Sunderland Might Earl)
• Fast efficient visualization tools for Uintah 

(Pascucci and Hansen)



Linear Solves arises from Navier –Stokes Equations
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equation to solve for p

Full model includes turbulence, 
chemical reactions  and radiation

Use Hype Solver distributed by LLNL
Many linear solvers inc. Preconditioned Conjugate 
Gradients on regular mesh patches used
Multi-grid pre-conditioner used
Careful adaptive strategies needed to get scalability
CCGrid13 paper. 

One radiation solve
per timestep



Linear Solves arises from Navier –Stokes Equations
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Arrive at pressure Poisson 
equation to solve for p

Full model includes turbulence, 
chemical reactions  and radiation

Use Hypre Solver distributed by LLNL
Many linear solvers inc. Preconditioned Conjugate 
Gradients on regular mesh patches used
Multi-grid pre-conditioner used
Careful adaptive strategies needed to get scalability
CCGrid13 paper. http://www.llnl.gov/CASC/hypre/

One radiation solve
Every 10 timesteps



NEBO/Wasatch Example 
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Dependency
specification

Execution
order

Express complex pde functions as 
DAG - automatically construct 
algorithms from expressions

Define field operations needed to 
execute tasks (fine grained vector 
parallelism on the mesh)

User writes only field operations code . 
Supports field & stencil operations 
directly - no more loops! 

Strongly typed fields ensure valid 
operations at compile time. Allows a 
variety of implementations to be tried 
without modifying application code.

Scalability on a node - use Uintah
infrastructure to get scalability across 
whole system

[Sutherland Earl Might]



Multicore & GPU Performance

rhs <<= -divOpX_( xConvFlux_ + xDiffFlux_ )
-divOpY_( yConvFlux_ + yDiffFlux_ )
-divOpZ_( zConvFlux_ + zDiffFlux_ );

phi <<= divX( -interpX(lambda) * gradX(T) )
+ divY( -interpY(lambda) * gradY(T) )
+ divZ( -interpZ(lambda) * gradZ(T) );

2 4 6 8 10 12 GP
U

64x64x64 1.3 2.4 2.6 3.3 3.3 3.3 13.8

128x128x1
28 1.9 3.9 4.9 6.8 7.8 6.0 26.0

2 4 6 8 10 12 GP
U

64x64x64 1.8 2.9 2.9 3.4 3.6 3.6 16.3

128x128x1
28 2.0 3.6 5.0 6.5 6.1 4.8 13.5

• One inlined grid loop, no temporaries.
• Better parallel performance than without chaining.
• Compile-time consistency checking (field-operator and field-field 

compatibility).



Wasatch – Nebo Recent Milestones
• Wasatch is solving (nonreacting miniboiler~3-4x 

speedup over the non-DSL approach.
• New Nebo backend for CPU resultied in 20-30% 

speedup in the entire Wasatch code base.
• Much of the Wasatch code base is GPU-ready
• Arches plus SpatialOps & Nebo EDSL being scoped.

Good GPU scaling  with (>32^3 per patch).
Loop fusion (heavy GPU kernels) needed e.g “coupled 
source & diffusion” 






Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes. 

2.2 Trillion
DOF 

Weak Scalability of Hypre Code
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We build our data management solution on most advanced technology in 
big data streaming analytics and visualization

Live demonstration at SC12 & 
13:
•~4TB per time step (100s of PF 
3D timesteps generated on 
Intrepid)
•Steaming live from ANL 
visualization cluster
•Interactive, immersive, analysis 
and visualization

Infrastructure that scales gracefully with available hardware resources

Cores available



Uintah+PIDX IntegrationUintah I/O One  data file per patch & 1 Metadata file per 
patch. Non-scalable I/O and   visualization
PIDX I/O:Multi-resolution, cache oblivious data format 
– IDX format. Real time interactive viz of simulation data 
High performance I/O – SC’13 View Dependent viz. using 
VisIt (ISC ’14) Load times in VisIt in parallel 

setting using PIDX I/O vs. 
Uintah I/O 

View Dependent Viz of Uintah BSF Data in IDX using VisIt

• Progression of AMR Uintah 
simulation for a 2-level Blast 
Wave

• AMR data written out using 
PIDX and visualized with 
ViSUS



DESIGNING FOR EXASCALE
Clear trend towards accelerators e.g. GPU but also Intel MIC – new NSF 
“Stampede” 10-. 15PF  Balance factor = flops/bandwidth - high

GPU performance “ok” for stencil-based codes ,2x over multicore cpu
estimated and achieved for ICE . Similar results by others.
Network and memory performance more slowly growing than cpu/gpu
performance. GPU perf.of ray-tracing radiation method is 100x  cpu

Overlapping and hiding Communications essential



Unified Heterogeneous Scheduler & Runtime node

Running CPU Task
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GPU Kernels

GPU-enabled tasks

ready tasks GPU ready tasks 

No  MPI inside node, lock free DW , cores and GPUs pull work



NVIDIA AMGX Linear Solvers on GPUs
Fast, scalable iterative gpu linear solvers for packages e.g., 
Flexible toolkit provides GPU accelerated Ax = b solver
Simple API for multiple apps domains. 
Multiple  GPUs (maybe thousands)  with scaling

Key Features
Ruge-Steuben algebraic MG 
Krylov methods: CG, 
GMRES, BiCGStab, 
Smoothers and Solvers: 
Block- Jacobi, Gauss-Seidel, 
incomplete LU, 

Flexible composition system 
MPI support OpenMP
support, Flexible and high 
level C  API,  

Free for non-commercial  use
Utah access  via Utah CUDA  COE.



Resilience 

Need interfaces at system level to help us consider:
Core failure – reroute tasks
Comms failure – reroute message
Node failure – need to replicate patches use an AMR 
type approach in which a coarse patch is on another 
node. In 3D has 12.5% overhead – suggested by 
Qingyu Meng Mike Heroux and others. 
Will explore this from fall 2014 onwards



Summary

• DAG abstraction important for achieving scaling
• Layered approach very important for not needing to change 

applications code 
• Scalability still requires  much engineering of the runtime 

system.
• General approach very powerful indeed.
• Obvious applicability to new architectures
• DSL approach very important in  future-proofing
• Scalability still a challenge even with DAG approach – which 

does work amazingly well
• GPU development ongoing
• The approach used here shows promise for very large core 

and GPU counts but using these architectures is an exciting 
challenge e.g. new Knights Landing NERSC8 machine
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