
Bringing (Clean) Coal Combustion to Drax via
Computational Modeling and Software

Abstractions for Exascale

Funding thank DOE ASCI (97-10), NSF , DOE
NETL+NNSA ARL , NSF , INCITE, XSEDE

Martin Berzins

with slides from James Sutherland, Chuck Hansen, Valerio
Pascucci, Phil Smith and Jeremy Thornock

(i) The Changing Nature of Computational Science
(ii) Clean Coal Boiler Design
(iii) The Uintah framework
(iv) Uintah Scalability
(v) Solvers EDSLs Visualization
(vi) Designing for Exascale
(vii) Conclusions

The Changing nature of
Computational Science

• The need for predictive simulations
• The move towards Exascale Computing

Predictive Computational Science [Oden Karniadakis]

Science is based on subjective probability in which
predictions must account for uncertainties in
parameters, models, and experimental data . This
involves many “experts” who are often wrong

Predictive Computational Science:
Successful models are verified (codes) and
validated (experiments) (V&V). The uncertainty in
computer predictions (the QoI’s) must be quantified
if the predictions are used in important decisions.
(UQ)

Predictive Computational (Materials) Science is
changing e.g. nano-maufacturing

“Uncertainty is an essential and non-
negotiable part of a forecast.
Quantifying uncertainty carefully and
explicitly is essential to scientific
progress.” Nate Silver

We cannot deliver
predictive materials by
design over the next
decade without
quantifying uncertainty

Confidence interval

2013 Titan, Blue Gene Q - 2 Petaflops per
MegaWatt 300K cpus 5M gpu cores h/w fault
every 12 hours

202X Exascale “goal” 50 Petaflops per MW
Or 20pJ per op.

Many more cores (majority on “accelerators”),
variable Power consumption. Communication
delays. Many more component failures. h/w fault
every 14 mins?

Great uncertainty in architectures probably
accelerator-based machines that will be much
more energy efficient.

The Challenge for Future Software?

Exascale also means Petascale in a cabinet

Can we move from petascale (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 flops) to exascale (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 flops)
computing for real engineering problems?

Clean Coal Boiler Design using
Predictive Computational Science

• Can we help design the next generation of
clean coal boilers?

• The CCMSC team
• The Application
• Current Simulations

Wired Magazine
BY CHARLES C. MANN 03.25.14 |
Renewables Aren’t Enough.
Clean Coal Is the Future

The team

Computer Science Predictive Modeling Uncertainty Quantification

The Exec

Taking UINTAH-X beyond petascale?

Todd Allen Dav John Alan
Harman Sanderson de St Germain Schmidt Humphrey

(i) UintahX Runtime System
(ii) Wasatch Nebo Domain Specific Approach (James and Matt)
(iii)Visus PIDX and Visit Visualization (Valerio and Chuck)

Thanks to Qingyu Meng (Google) and Justin Luitjens (NVIDIA)

Overarching Application

• high efficiency advanced ultra-
supercritical (AUSC) oxy-coal
tangentially-fired power boiler

extreme computing
• predictive science w hybrid validation/UQ
• expensive function evaluation
• expensive data
• rapid design and deployment w Alstom

• global reach:
present in 100 countries
• 2011/12 sales:
$26.5 billion
• 93,000 employees

GE takeover in progress

ALSTOM

Existing Simulations of
Alstom Clean coal Boilers

For 350MWe boiler problem. LES resolution
needed: 1mm per side for each
computational volume = 9x 10**12 cells
This is 1000x our largest simulations on
764K cores. - to run in 48 hours of wall
clock time requires 50-100M fast cores.

Temperature field

Dr Jeremy Thornock ICSE

Existing Simulations of Alstom Clean coal
Boilers using ARCHES in Uintah
(i) Traditional Lagrangian/RANS approaches do not address well partile effects
(ii) LES has potential to predict oxy--‐coal flames and to be an important design tool

(iii) LES is “like DNS” for coal

• Structured, finite-volume

• Mass, momentum, energy with radiation

• Higher-order temporal and spatial numerics

• LES closure

• Tabulated chemistry

• PDF mixing models

• DQMOM

Computational challenges at these scales

• Uncertainty quantification. How reliable is it?
• Modeling Particles
• Radiation (see last years talk for Ray Tracing).
• Solving linear systems

Strong Scaling Radiation Problem

Verification Validation Uncertainty Quantification
State of the Art with Buoyant Helium Plume Model

Red is experimental uncertainty

Blue is uncertainty region from simulation

Green is uncertainty in vertical velocity
consistent with experimental data and
input parameters

Sources: Smith Schmidt

Turbulent combustion problem
typical of any real life cases,
experiments at Sandia Labs

DQMOM Equations: Number Density Function (NDF)
The NDF describes the number of
particles per volume as a function of several particle independent
variables (e .g . , particle diameter , particle composition, etc.) called
internal coordinates.

Given a volume V and a set of internal coordinates ξ, the total number of
particles in this volume is:

Julian Pedel Thesis Institute for Clean
and Secure Energy 2014

wα number of particles per vol. assoc with node

• Abscissas values are obtained by dividing
weighted
abscissas by weights: problem when weights are null
• Need to know to aα and bα to transport weights and
weighted abscissas:

aα and bα are obtained by solving a linear system: Ax = B

Matrix A:
•size N(Nξ+1)
•often ill-conditioned and has to be solved in every cell

DQMOM Numerical Issues

• Demonstrate LES predictivity for
oxy-coal applications

• Provide reference point for high-
fidelity simulation tools

• Provide a predictive tool for modern
boiler design and retrofit
applications

• Advance the heterogeneous scaling
capabilities of Uintah Computational
Framework

V/UQ Assessment of a Large Eddy Simulation Tool
for Clean-Coal Technology

Images (from left to right) of large coal particle distribution, oxygen
concentration, and temperature throughout the boiler.

• First full boiler scale simulation using high-fidelity LES with parameter variation over input
ranges (15M cpu hrs)

• Initial validation of LES results with experimental data
• Performance 2X better for the LES capability
• First-cut demonstration of the GPU reverse Monte-Carlo for performing radiation calculations
• Scaling demonstration of the Uintah hybrid scheduler (3M)
• GPU implementation of key pieces of the DQMOM solution process

Exascale and the
UINTAH FRAMEWORK

Harrod SC12: “today’s bulk synchronous (BSP),
distributed memory, execution model is
approaching an efficiency, scalability, and power
wall.”

Sarkar et al. “Exascale programming will require
prioritization of critical-path and non-critical path
tasks, adaptive directed acyclic graph scheduling of
critical-path tasks, and adaptive rebalancing of all
tasks…...”

“ DAG Task-based programming has always been a
bad idea. It was a bad idea when it was introduced
and it is a bad idea now “ Parallel Processing Award
Winner

Vivek Sarkar’s thesis 1989 introduced many of the
main ideas we use today. Of course everything is
theoretically intractable see. Sinnen “Task Scheduling
for Parallel Systems”

The Exascale challenge for Future Software?
Compute

Communicate

Compute

Uintah(X) Architecture Decomposition
The problem specs for some components have not changed as we have
gone from 600 to 600K cores it is the Runtime System that changed

Application Specification via
ICE MPM ARCHES or
NEBO/WASATCH DSL

Abstract task-graph program
that executes on:

Runtime System
with:Asynchronous out-of-order
execution, work stealing

Overlap communication &
computation

Tasks running on cores and
accelerators

Scalable I/O via Visus PIDX

Simulation
Controller

Scheduler

Load
Balancer

Runtime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERS

Uintah Directed Acyclic
(Task) Graph-Based
Computational Framework

Each task defines its computation with required
inputs and outputs

Uintah uses this information to create a task graph
of computation (nodes) + communication
(along edges)

Tasks do not explicitly define communications but
only what inputs they need from a data
warehouse and which tasks need to execute
before each other.

Communication is overlapped with computation

Taskgraph is executed adaptively and sometimes
out of order

Task
Compile

Run
Time
(each

timestep)

xml

Parallel I/O

UINTAH ARCHITECTURE

Calculate Residuals
Solve Equations

RUNTIME
SYSTEM

Visus PIDX
VisIt

ARCHES or WASATCH/NEBO

ICE is a cell-centered finite volume
method for Navier Stokes equations

MPM is a novel
method that uses
particles and nodes
Exchange data with
ICE, not just boundary
condition

• Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.

• Unstructured Points (for Solids) are Particles

Uintah Patch and Variables

ARCHES is a combustion code using several
different radiation models and linear solvers

Uintah:MD based on Lucretius is a new molecular dynamics component

The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches

This is not a single graph. Multiscale and
Multi-Physics merely add flavor to the “soup”.

halos halos external
halos

external
halos

Uintah’s Adaptive
Meshes

• Structured Grid + Unstructured
Points

• Patch-based Domain
Decomposition

• Adaptive Mesh Refinement

• Dynamic Load Balancing
• Profiling + Forecasting Model
• Parallel Space Filling Curves

• Works on MPI and/or thread level
• Scales to 768K cores

The spatial mesh follows features of interest - in
this case a moving container.

Burgers Example I<Grid>
<Level>

<Box label = "1">
<lower> [0,0,0] </lower>
<upper> [1.0,1.0,1.0] </upper>
<resolution> [50,50,50] </resolution>
<patches> [2,2,2] </patches>
<extraCells> [1,1,1] </extraCells>

</Box>
</Level>

</Grid>

void Burger::scheduleTimeAdvance(const LevelP& level,
SchedulerP& sched)

{
…..
task->requires(Task::OldDW, u_label, Ghost::AroundNodes, 1);

task->requires(Task::OldDW, sharedState_->get_delt_label());

task->computes(u_label);
sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

}

25 cubed patches
8 patches
One level of halo elements

Get old solution from
old data warehouse
One level of halos
Compute new solution

Burgers Equation code
void Burger::timeAdvance(const ProcessorGroup*, const PatchSubset* patches,
const MaterialSubset* matls, DataWarehouse* old_dw, DataWarehouse* new_dw)
//Loop for all patches on this processor
{ for(int p=0;p<patches->size();p++){

//Get data from data warehouse including 1 layer of "ghost" nodes from
surrounding patches
old_dw->get(u, lb_->u, matl, patch, Ghost::AroundNodes, 1);

// dt, dx Time and space increments
Vector dx = patch->getLevel()->dCell();

old_dw->get(dt, sharedState_->get_delt_label());

// allocate memory for results new_u
new_dw->allocateAndPut(new_u, lb_->u, matl, patch);

// define iterator range l and h …… lots missing here and Iterate through all the
nodes

for(NodeIterator iter(l, h);!iter.done(); iter++){
IntVector n = *iter;
double dudx = (u[n+IntVector(1,0,0)] - u[n-IntVector(1,0,0)]) /(2.0 * dx.x());
double du = - u[n] * dt * (dudx);

new_u[n]= u[n] + du;
}

0t xU UU+ =

UINTAH SCALABILITY

Summary of Scalability Improvements

(i) Move to a one MPI process per multicore node
reduces memory to less than 10% of previous for
100K+ cores

(ii) Use optimal size patches to balance overhead and
granularity 16x16x 16 to 30x30x30.

(iii) Use only one data warehouse but allow all cores
fast access to it, through the use of atomic
operations.

(iv) Prioritize tasks with the most external
communications

(v) Use out-of-order execution when possible

Select Task &
Post MPI Receives

Select Task &
Execute Task

Check Records &
Find Ready Tasks

Comm
Records

Internal
Task

Queue

External
Task

Queue

Task
Graph

Post Task
MPI Sends

N
etw

ork

Data
Warehous

e
(one per-

node)

put

valid

send

get

recv

MPI_
ISend

MPI_
IRecv

MPI_
Test

Uintah Runtime System

Thread 1
2

3

Weak Scaling AMR+MPM ICE
M = Mira, T=Titan, S=Stampede

/Proc

Only 2
patches
per core
Includes
packing
unpacking
and data
warehouse

Only 8
interior
patches
from 32

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of
Spanish Fork Accident 8/10/05
Speeding truck with 8000
explosive boosters each
with 2.5-5.5 lbs of explosive
overturned and caught fire
Experimental evidence for
a transition from
deflagration to detonation?

Spanish Fork
Accident

500K mesh patches
1.3 Billion mesh cells
7.8 Billion particles

At every stage when we move
to the next generation of problems
Some of the algorithms and data
structures need to be replaced .

Scalability at one level is no certain
Indicator fro problems or machines
An order of magnitude larger

MPM AMR ICE
Strong Scaling

*

Complex fluid-structure interaction problem
with adaptive mesh refinement, see SC13/14 paper
NSF funding.

Resolution B
29 Billion particles
4 Billion mesh cells
1.2 Million mesh
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray
XE6/XK7 700K+
cores

Solvers, EDSLs, Viz and Analysis

• Hypre Solver
• Nebo EDSL for Uintah (Sunderland Might Earl)
• Fast efficient visualization tools for Uintah

(Pascucci and Hansen)

Linear Solves arises from Navier –Stokes Equations

2

. 0,

where is density, is velocity vector and is pressure

, where .

t
p

u

u
u F uu up F g
t

ν

ρ ρ

ρ
ρ ρ ρ

∂
+∇ =

∂

∂
= −∇ − ∇= ∇ + +

∂

2
2

2, where . pp R R F
t

∂
∇ = = ∇ +

∂

Arrive at pressure Poisson
equation to solve for p

Full model includes turbulence,
chemical reactions and radiation

Use Hype Solver distributed by LLNL
Many linear solvers inc. Preconditioned Conjugate
Gradients on regular mesh patches used
Multi-grid pre-conditioner used
Careful adaptive strategies needed to get scalability
CCGrid13 paper.

One radiation solve
per timestep

Linear Solves arises from Navier –Stokes Equations

2

. 0,

where is density, is velocity vector and is pressure

, where .

t
p

u

u
u F uu up F g
t

ν

ρ ρ

ρ
ρ ρ ρ

∂
+∇ =

∂

∂
= −∇ − ∇= ∇ + +

∂

2
2

2, where . pp R R F
t

∂
∇ = = ∇ +

∂

Arrive at pressure Poisson
equation to solve for p

Full model includes turbulence,
chemical reactions and radiation

Use Hypre Solver distributed by LLNL
Many linear solvers inc. Preconditioned Conjugate
Gradients on regular mesh patches used
Multi-grid pre-conditioner used
Careful adaptive strategies needed to get scalability
CCGrid13 paper. http://www.llnl.gov/CASC/hypre/

One radiation solve
Every 10 timesteps

NEBO/Wasatch Example

1
(,) n

h ij i i
J T Y T h Jλ

=
= − ∇ −∑

Energy equation
.() . 0h

e eu J terms
t
ρ ρ∂

+∇ +∇ + =
∂

Enthalpy diffusive flux

1
(,) (,)

ns
T

i ij j j i j
j

J D T Y Y D T Y T
=

= − ∇ − ∇∑

Dependency
specification

Execution
order

Express complex pde functions as
DAG - automatically construct
algorithms from expressions

Define field operations needed to
execute tasks (fine grained vector
parallelism on the mesh)

User writes only field operations code .
Supports field & stencil operations
directly - no more loops!

Strongly typed fields ensure valid
operations at compile time. Allows a
variety of implementations to be tried
without modifying application code.

Scalability on a node - use Uintah
infrastructure to get scalability across
whole system

[Sutherland Earl Might]

Multicore & GPU Performance

rhs <<= -divOpX_(xConvFlux_ + xDiffFlux_)
-divOpY_(yConvFlux_ + yDiffFlux_)
-divOpZ_(zConvFlux_ + zDiffFlux_);

phi <<= divX(-interpX(lambda) * gradX(T))
+ divY(-interpY(lambda) * gradY(T))
+ divZ(-interpZ(lambda) * gradZ(T));

2 4 6 8 10 12 GP
U

64x64x64 1.3 2.4 2.6 3.3 3.3 3.3 13.8

128x128x1
28 1.9 3.9 4.9 6.8 7.8 6.0 26.0

2 4 6 8 10 12 GP
U

64x64x64 1.8 2.9 2.9 3.4 3.6 3.6 16.3

128x128x1
28 2.0 3.6 5.0 6.5 6.1 4.8 13.5

• One inlined grid loop, no temporaries.
• Better parallel performance than without chaining.
• Compile-time consistency checking (field-operator and field-field

compatibility).

Wasatch – Nebo Recent Milestones
• Wasatch is solving (nonreacting miniboiler~3-4x

speedup over the non-DSL approach.
• New Nebo backend for CPU resultied in 20-30%

speedup in the entire Wasatch code base.
• Much of the Wasatch code base is GPU-ready
• Arches plus SpatialOps & Nebo EDSL being scoped.

Good GPU scaling with (>32^3 per patch).
Loop fusion (heavy GPU kernels) needed e.g “coupled
source & diffusion”

Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes.

2.2 Trillion
DOF

Weak Scalability of Hypre Code

44

We build our data management solution on most advanced technology in
big data streaming analytics and visualization

Live demonstration at SC12 &
13:
•~4TB per time step (100s of PF
3D timesteps generated on
Intrepid)
•Steaming live from ANL
visualization cluster
•Interactive, immersive, analysis
and visualization

Infrastructure that scales gracefully with available hardware resources

Cores available

Uintah+PIDX IntegrationUintah I/O One data file per patch & 1 Metadata file per
patch. Non-scalable I/O and visualization
PIDX I/O:Multi-resolution, cache oblivious data format
– IDX format. Real time interactive viz of simulation data
High performance I/O – SC’13 View Dependent viz. using
VisIt (ISC ’14) Load times in VisIt in parallel

setting using PIDX I/O vs.
Uintah I/O

View Dependent Viz of Uintah BSF Data in IDX using VisIt

• Progression of AMR Uintah
simulation for a 2-level Blast
Wave

• AMR data written out using
PIDX and visualized with
ViSUS

DESIGNING FOR EXASCALE
Clear trend towards accelerators e.g. GPU but also Intel MIC – new NSF
“Stampede” 10-. 15PF Balance factor = flops/bandwidth - high

GPU performance “ok” for stencil-based codes ,2x over multicore cpu
estimated and achieved for ICE . Similar results by others.
Network and memory performance more slowly growing than cpu/gpu
performance. GPU perf.of ray-tracing radiation method is 100x cpu

Overlapping and hiding Communications essential

Unified Heterogeneous Scheduler & Runtime node

Running CPU Task

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Running CPU Task

Running CPU Task

CPU Task Queues
Internal ready tasks

CPU Threads

Shared
Data

MPI Data
Ready

MPI sends

MPI recvs

Task
Graph

PUT

GET

GPU
Data

Warehouse

H2D
stream

D2H
stream

Running GPU Task

GPU Task Queues

Running GPU Task PUT

GET
co

m
pl

et
ed

 ta
sk

s

stream
events

GPU Kernels

GPU-enabled tasks

ready tasks GPU ready tasks

No MPI inside node, lock free DW , cores and GPUs pull work

NVIDIA AMGX Linear Solvers on GPUs
Fast, scalable iterative gpu linear solvers for packages e.g.,
Flexible toolkit provides GPU accelerated Ax = b solver
Simple API for multiple apps domains.
Multiple GPUs (maybe thousands) with scaling

Key Features
Ruge-Steuben algebraic MG
Krylov methods: CG,
GMRES, BiCGStab,
Smoothers and Solvers:
Block- Jacobi, Gauss-Seidel,
incomplete LU,

Flexible composition system
MPI support OpenMP
support, Flexible and high
level C API,

Free for non-commercial use
Utah access via Utah CUDA COE.

Resilience

Need interfaces at system level to help us consider:
Core failure – reroute tasks
Comms failure – reroute message
Node failure – need to replicate patches use an AMR
type approach in which a coarse patch is on another
node. In 3D has 12.5% overhead – suggested by
Qingyu Meng Mike Heroux and others.
Will explore this from fall 2014 onwards

Summary

• DAG abstraction important for achieving scaling
• Layered approach very important for not needing to change

applications code
• Scalability still requires much engineering of the runtime

system.
• General approach very powerful indeed.
• Obvious applicability to new architectures
• DSL approach very important in future-proofing
• Scalability still a challenge even with DAG approach – which

does work amazingly well
• GPU development ongoing
• The approach used here shows promise for very large core

and GPU counts but using these architectures is an exciting
challenge e.g. new Knights Landing NERSC8 machine

	Bringing (Clean) Coal Combustion to Drax via Computational Modeling and Software Abstractions for Exascale
	The Changing nature of Computational Science
	Predictive Computational Science [Oden Karniadakis]
	The Challenge for Future Software?
	Clean Coal Boiler Design using Predictive Computational Science
	The team
	�Taking UINTAH-X beyond petascale?�� �
	Overarching Application
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Existing Simulations of Alstom Clean coal Boilers
	Existing Simulations of Alstom Clean coal Boilers using ARCHES in Uintah
	Computational challenges at these scales
	Verification Validation Uncertainty Quantification State of the Art with Buoyant Helium Plume Model
	DQMOM Equations: Number Density Function (NDF)
	Slide Number 17
	Slide Number 18
	V/UQ Assessment of a Large Eddy Simulation Tool for Clean-Coal Technology
	Slide Number 20
	The Exascale challenge for Future Software?
	Slide Number 22
	Slide Number 23
	
	Uintah Patch and Variables
	Slide Number 26
	Uintah’s Adaptive Meshes
	Burgers Example I
	Burgers Equation code
	UINTAH SCALABILITY
	Summary of Scalability Improvements
	Slide Number 32
	Weak Scaling AMR+MPM ICE�M = Mira, T=Titan, S=Stampede
	Slide Number 34
	Slide Number 35
	MPM AMR ICE Strong Scaling
	Solvers, EDSLs, Viz and Analysis
	Linear Solves arises from Navier –Stokes Equations
	Linear Solves arises from Navier –Stokes Equations
	NEBO/Wasatch Example
	Multicore & GPU Performance
	Wasatch – Nebo Recent Milestones
	Slide Number 43
	We build our data management solution on most advanced technology in big data streaming analytics and visualization
	Uintah+PIDX Integration
	DESIGNING FOR EXASCALE
	Unified Heterogeneous Scheduler & Runtime node
	NVIDIA AMGX Linear Solvers on GPUs
	Resilience
	Summary

