
Multi-Scale and Multi-Physics
Simulations on Present and Future

Architectures
Martin Berzins

Thanks to DOE ASCI (97-10), NSF , DOE NETL+NNSA ARL
NSF , INCITE, XSEDE, James, Carter and Dan

www.uintah.utah.edu

1. Background and motivation
2. Uintah Software and Multicore Scalability
3. Runtime Systems for Heterogeneous Architectures
4. A Challenging Clean Coal Application
5. Conclusions and Portability for future Architectures Using DSLs

and Kokkos

* Now at Google

Software team:
Qingyu Meng* John Schmidt, Alan Humphrey, Justin Luitjens*,

Extreme Scale Research and teams in Utah

Energetic Materials: Chuck Wight, Jacqueline Beckvermit, Joseph Peterson,
Todd Harman, Qingyu Meng NSF PetaApps 2009-2014 $1M, P.I. MB

PSAAP Clean Coal Boilers: Phil Smith (P.I.), Jeremy Thornock James Sutherland
etc Alan Humphrey John Schmidt DOE NNSA 2013-2018 $16M (MB CS lead)
Electronic Materials by Design: MB (PI) Dmitry Bedrov, Mike Kirby, Justin
Hooper, Alan Humphrey Chris Gritton, + ARL TEAM 2011-2016 $12M

* Now at NVIDIA

Machines: Titan, Stampede, Mira, Vulcan, Blue Waters, local linux, local linux/GPU, MIC

Harrod SC12: “today’s bulk synchronous (BSP),
distributed memory, execution model is approaching
an efficiency, scalability, and power wall.”

Sarkar et al. “Exascale programming will require
prioritization of critical-path and non-critical path tasks,
adaptive directed acyclic graph scheduling of critical-
path tasks, and adaptive rebalancing of all tasks…...”

“ DAG Task-based programming has always been a bad
idea. It was a bad idea when it was introduced and it is a
bad idea now “ Parallel Proc. Award Winner

Much architectural uncertainty, many storage and
power issues. Adaptive portable software needed

The Exascale challenge for Future Software?
Compute

Communicate

Compute

Predictive Computational Science [Oden Karniadakis]

Science is based on subjective probability in which
predictions must account for uncertainties in
parameters, models, and experimental data . This
involves many “experts” who are often wrong

Predictive Computational Science:
Successful models are verified (codes) and
validated (experiments) (V&V). The uncertainty in
computer predictions (the QoI’s) must be quantified
if the predictions are used in important decisions.
(UQ)

Predictive Computational (Materials) Science is
changing e.g. nano-maufacturing

“Uncertainty is an essential and non-
negotiable part of a forecast.
Quantifying uncertainty carefully and
explicitly is essential to scientific
progress.” Nate Silver

We cannot deliver
predictive materials by
design over the next
decade without
quantifying uncertainty

Confidence interval

Uintah(X) Architecture Decomposition

Application Specification via
ICE MPM ARCHES or
NEBO/WASATCH DSL

Abstract task-graph program
that

Is compiled for

Executes on: Runtime
System with: asynchronous out-
of-order execution, work
stealing, Overlap communication
& computation.Tasks running on
cores and accelerators

Scalable I/O via Visus PIDX

Simulation
Controller

Scheduler

Load
BalancerRuntime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERS

CPUGPU Xeon Phi

Some components have not
changed as we have gone
from 600 to 600K cores

ICE is a cell-centered finite volume
method for Navier Stokes equations

ICE Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.
Unstructured Points (for Solids) are MPM
Particles

Uintah Patch, Variables and AMR Outline

ARCHES is a combustion code using several
different radiation models and linear solvers

Uintah:MD based on Lucretius is a new molecular dynamics component

• Structured Grid + Unstructured
Points

• Patch-based Domain
Decomposition

• Regular Local Adaptive Mesh
Refinement

• Dynamic Load Balancing
• Profiling + Forecasting Model
• Parallel Space Filling Curves

• Works on MPI and/or thread level

Uintah Directed Acyclic (Task) Graph-
Based Computational Framework

Each task defines its computation with
required inputs and outputs

Uintah uses this information to create a task
graph of computation (nodes) +
communication (along edges)

Tasks do not explicitly define communications
but only what inputs they need from a
data warehouse and which tasks need to
execute before each other.

Communication is overlapped with
computation

Taskgraph is executed adaptively and
sometimes out of order, inputs to tasks
are saved

Tasks get data from OLD Data Warehouse and put results into NEW Data Warehouse

Runtime System

The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches

This is not a single graph. Multiscale and
Multi-Physics merely add flavor to the “soup”.
There are many adaptive strategies and tricks
that are used in the execution of this graph
soup.

halos halos external
halos

external
halos

Thread/MPI Scheduler (De-centralized)

• One MPI Process per Multicore node
• All threads directly pull tasks from task queues execute tasks and

process MPI sends/receives
• Tasks for one patch may run on different cores
• One data warehouse and task queue per multicore node
• Lock-free data warehouse enables all cores to access memory

quickly via atomic operations

Core runs tasks and checks
queues

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Core runs tasks and checks
queues

Core runs tasks and checks
queues

completed task

Task Queues
New tasks

completed task

Threads

Shared
Data

Ready task

sends

receives

Task
Graph

PUT

GET

MPI

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of
Spanish Fork Accident 8/10/05
Speeding truck with 8000
explosive boosters each
with 2.5-5.5 lbs of explosive
overturned and caught fire
Experimental evidence for
a transition from
deflagration to detonation?

2013 Incite 200m cpu hrs

Spanish Fork
Accident

500K mesh patches
1.3 Billion mesh cells
7.8 Billion particles

At every stage when we move
to the next generation of problems
Some of the algorithms and data
structures need to be replaced .

Scalability at one level is no certain
Indicator fro problems or machines
An order of magnitude larger

MPM AMR ICE
Strong Scaling

*

Complex fluid-structure interaction problem
with adaptive mesh refinement, see SC13/14 paper
NSF funding.

Resolution B
29 Billion particles
4 Billion mesh cells
1.2 Million mesh
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray
XE6/XK7 700K+
cores

Scalability is at least partially achieved by not
executing tasks in order e.g. AMR fluid-structure
interaction

Straight line represents given order of tasks Green X shows
when a task is actually executed.
Above the line means late execution while below the line means
early execution took place. More “late” tasks than “early” ones
as e.g.
TASKS: 1 2 3 4 5 1 4 2 3 5

Early Late execution

Summary of Scalability Improvements

(i) Move to a one MPI process per multicore node
reduces memory to less than 10% of previous for
100K+ cores

(ii) Use optimal size patches to balance overhead and
granularity 16x16x 16 to 30x30x30.

(iii) Use only one data warehouse but allow all cores
fast access to it, through the use of atomic
operations.

(iv) Prioritize tasks with the most external
communications

(v) Use out-of-order execution when possible

An Exascale Design Problem - Alstom Clean Coal Boilers

For 350MWe boiler problem. LES resolution
needed: 1mm per side for each computational volume = 9x 1012 cells
This is one thousand times larger than the largest problems we solve
today.

Temperature field

Prof. Phil Smith Dr Jeremy Thornock ICSE

Existing Simulations of Boilers using ARCHES in Uintah
(i) Traditional Lagrangian/RANS approaches do not address well particle effects
(ii) LES has potential to predict oxy--‐coal flames and to be an important design tool

(iii) LES is “like DNS” for coal, but 1mm mesh needed to capture phenomena

Structured, finite-volume method, Mass, momentum, energy with
radiation

Higher-order temporal/spatial numerics, LES closure, Tabulated
chemistry

Mesh spacing filter

Uncertainty Quantified
Runs on a Small Prototype
Boiler

Red is experiment
Blue is simulation
Green is consistent

Absence of scales for commercial
reasons

Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes.

2.2 Trillion
DOF

Weak Scalability of Hypre Code

Linear Solves arises from Low Mach Number Navier –Stokes Equations

Use Hypre Solver from LLNL
Preconditioned Conjugate Gradients
on regular mesh patches used

Multi-grid pre-conditioner used
Careful adaptive strategies needed
to get scalability

One radiation solve
every 10 timesteps

GPU-RMCRT
Incorporate dominant physics

• Emitting / Absorbing Media
• Emitting and Reflective Walls
• Ray Scattering

User controls # rays per cell
• Each cell has Temp Absorb

and Scattering Coeffs
Radiative Heat Transfer key

• Replicate Geometry on
every node

• Calculate heat fluxes on
Geometry

• Transfer heat fluxes from
all nodes to all nodes

Reverse ray tracing back from
Heat flux at walls to origin

More efficient than forward ray
tracing

NVIDIA K20m GPU ~order of magnitude speedup over
16 CPU cores

(Intel Xeon E5-2660 @2.20 GHz)

K20 and K40

Internal 200-
300 GB/sec

External 8-16
GB/sec (the
Dixie straw

Uintah Heterogeneous Runtime System (GPU and
Intel Xeon Phi (MIC)

• Use CUDA Asynchronous
API

• Automatically generate
CUDA streams for task
dependencies

• Concurrently execute kernels
and memory copies

• Preload data before task
kernel executes

• Multi-GPU support

hostComputes

hostRequires

existing host
memory

devComputes

devRequires

Pin this memory with
CudaHostRegister()

Page locked buffer

cudaMemcpyAsync(H2D)

computation

cudaMemcpyAsync(D2H)
Free pinned host

memory

Result back on host

Call-back executed here
(kernel run)

Automatic D2H copy here

GPU Task and Data
Management

Framework Manages Data Movement
Host  Device

Data Transfer Kernel Execution
Kernel Execution

Data Transfer

Normal Page-locked Memory

GPU-Based RMCRT Scalability
Mean time per timestep
for GPU lower than CPU
(up to 64 GPUs)

GPU implementation
quickly runs out of work

All-to-all nature of
problem limits size that
can be computed due to
memory and comm
constraints with large,
highly resolved physical
domains

Strong scaling results for production
GPU implementations of RMCRT

NVIDIA - K20 GPUs

Adaptive RMCRT Approach
If we have N nodes all-to all complexity N log(N). Data
sent is N log(N) FFpN (Fflux functions_per_Node)
MPI buffers swamped on current machines

Use coarse patches
Further away

This is a well
understood
math paradigm.
Used in lubrication, now in
MD going back to Brandt 90s.

Seen in MD as the next advance
In scalability for long range forces

USE
AMR to
reduce
data sent

Multi-Level RMCRT CPU Scalability

CPU Prototype in ARCHES

Summary
• Layered DAG abstraction important for scaling and for not needing to

change applications code
• Scalability still requires tuning the runtime system. Cannot develop nodal

code in isolation.
• Future Portability: use Kokkos for rewriting legacy applications

+Wasach/Nebo DSL for new code. MIC and GPU ongoing.
• Linear Solvers Hypre and AMGX

DSL Wasatch (Sutherland) gives 3-4x
speedup.
Nebo backend for CPU resulted in 20-30%
speedup in the entire Wasatch code base.
Much of the Wasatch code base is GPU-ready
next is Arches

Kokkos: A Layered Collection of Libraries
Carter Edwards and Dan Sunderland

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, Uses

C++ template meta-programming
 Multidimensional Arrays, with a twist

 Layout mapping: multi-index (i,j,k,...) ↔
memory location, invisble touse

 Choose layout to satisfy device-specific
memory access pattern

 Good initial results on Xeon, Xeon Phi,
CPUs

	�Multi-Scale and Multi-Physics Simulations on Present and Future Architectures�
	� �
	The Exascale challenge for Future Software?
	Predictive Computational Science [Oden Karniadakis]
	Slide Number 5
	Uintah Patch, Variables and AMR Outline
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Thread/MPI Scheduler (De-centralized)
	Slide Number 11
	Slide Number 12
	MPM AMR ICE Strong Scaling
	Slide Number 14
	Summary of Scalability Improvements
	An Exascale Design Problem - Alstom Clean Coal Boilers
	Existing Simulations of Boilers using ARCHES in Uintah
	Slide Number 18
	Slide Number 19
	GPU-RMCRT
	Slide Number 21
	Uintah Heterogeneous Runtime System (GPU and Intel Xeon Phi (MIC)
	GPU Task and Data Management
	GPU-Based RMCRT Scalability
	 Adaptive RMCRT Approach
	Multi-Level RMCRT CPU Scalability
	Summary

