
Solving Petascale Turbulent Combustion
Problems with the Uintah Software

Martin Berzins
DOE NNSA PSAAP2 Center

Thanks to DOE ASCI (97-10), NSF , DOE NETL+NNSA, NSF , INCITE, XSEDE,
ALCC, ORNL, ALCF for funding and cpu hours
This work is part of our NNSA PSSAP2 Center using INCITE + ALCC awards

PSAAP2 Applications Team PSAAP DSL Team
Todd Harman Jeremy Thornock Derek Harris Ben Issac James Sutherland Tony Saad

PSAAP Extreme Scaling team SANDIA
John Schmidt Alan Humphrey John Holmen Brad Peterson Dan Sunderland

Part of Utah PSAAP Center Phil Smith(PI) Dave Pershing MB

NSF RESILIENCE
Sahithi Chaganti Aditya Pakki

Seven abstractions for applications post- petascale

1.A task-based formulation of problems at scale
PSAAP GE/Alstom Clean Coal Boiler
2. A programming model to write these tasks as code Uintah tasks
specify halos; Read from /Write to local data warehouse
3.A runtime system to execute these tasks
Uintah Runtime System continues to evolve
4. A low-level portability layer to allow tasks to run on different
architectures Kokkos
5.Domain specific language to ease problem solving
Nebo Wasatch (not discussed here)
6 A Resilience model AMR based duplication
7. Scalable components I/O, in-situ Vis, Solvers PIDX, Visit, hypre.

92 meters

O2 concentrations boiler simulation

Alstom Power 1000MWe “Twin Fireball” boiler
Supply power for 1M people
1mm grid resolution = 9 x 1012 cells
100x > largest problems solved today
AMR, linear systems, thermal radiation
Turbulent combustion LES

Simulations of Clean coal Boilers using ARCHES in Uintah

• Traditional Lagrangian/RANS approaches
do not address well particle effects so
use Large Eddy Simulation has
potential to be an important design tool

• Structured, high order finite-volume Mass,
momentum, energy conservation

• Particles via DQMOM (many small linear solves)

• Low Mach number approx. (pressure Poisson
solve up to variables hypre GMG + RB GS

• Radiation via Discrete Ordinates – massive
• solves 20+ every few steps of Radiation Transfer

Equation with hypre
• Radiation Ray tracing .
• Uncertainty quantification

1210

Red is expt
Blue is sim.
Green is consistent

See [Modest and Howarth]

Uintah Programing Model for Stencil Timestep

Unew = Uold +
dt*F(Uold,Uhalo)

N
etw

ork

Old Data
WarehouseGET Uold Uhalo

Halo receives
Uhalo

MPI

New Data
WarehousePUT Unew

Halo sendsExample Stencil Task

User specifies mesh patches and halo levels and
connections

Uintah Architecture

Simulation
Controller

Scheduler

Load
Balancer

Runtime System

ARCHES DSL: NEBO

PIDX

VisIT

UQ DRIVERS

CPUsGPUs Xeon Phis

Applications code
Programing model

Automatically generated
Abstract C++ Task Graph Form

Adaptive Execution of tasks

Components NOT
architecture specific and do
not change

asynchronous out-of-order
execution, work stealing, overlap
communication & computation.

Strong and weak scaling out to
800K cores for AMR Fluid structure
interaction
Open source software
Worldwide distribution
Broad user base

Task
Data

Warehouse

hypre linear solver

Uintah: Unified Heterogeneous Scheduler & Runtime node

Running CPU Task

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Running CPU Task

Running CPU Task

CPU Task Queues
Internal ready tasks

CPU Threads

Shared
Data

MPI Data
Ready

MPI sends

MPI recvs

Task
Graph

PUT

GET

GPU
Data

Warehouse

H2D
stream

D2H
stream

Running GPU Task

GPU Task Queues

Running GPU Task PUT

GET
co

m
pl

et
ed

 ta
sk

s

stream
events

GPU Kernels

GPU-enabled tasks

ready tasks GPU ready tasks

No MPI inside node, lock free Data Warehouse , cores and GPUs pull work

GPU
Data

Warehouse

Devilishly
difficult

Scaling Results
Mira 5/22

I/O every 10 steps

Standard timestep including pressure Poisson solve

Radiation solve Discrete
Ordinates
Every 7 steps S_N 6 , 48
directions
hypre for each direction

One 12x12x12 patch per core, 10K variables per core, 31 timesteps
Largest case 5 Bn unknowns. Production runs use 250K cores
For I/O PIDX scales better and is being linked to Uintah
For radiation we have Raytracing working

Time

10

Radiation Overview

=
∂
∂

t
T

Solving energy and radiative heat transfer equations simultaneously

• Radiation-energy coupling incorporated by radiative source term
• Energy equation conventionally solved by ARCHES (finite volume)
• Temperature field, T used to compute net radiative source term
• requires integration of incoming intensity about a solid angle with

reverse Monte Carlo ray tracing (RMCRT)

Diffusion – Convection + Source/Sinks q⋅∇

q⋅∇

∑∫
=

⇒Ω
N

ray
rayin N

IdI
14

4π

π

Mutually exclusive Rays traced backwards from
e.g. S to E computational cell (cuda thread),
eliminating the need to track rays that never
reach that cell S
Todd Harman, Alan Humphrey, Derek Harris

11

Multi-Level AMR
GPU RMCRT

Replicate mesh and use coarse
representation of computational
domain with multiple levels
Define Region of Interest (ROI)
Surround ROI with coarser grids
As rays travel further away from
ROI, the mesh spacing becomes
larger
Transmit new information
relating to heat fluxes adsorption
and scattering coeffs using same
adaptive ideas
Reduces computational cost,
memory and communications
volume.

Todd Harman, Alan Humphrey

16,384
GPUs

12

Better use of GPUs with Per Task GPU Datawarehouse
• Single, shared DataWarehouse does not scale with problem

complexity
• increasing DW size, meant more device synchronization

• Solution: per task DataWarehouses on GPU
• no sharing or atomic operations required
• can overlap comp and comm in a thread-safe manner

Brad Peterson

13

Better use of GPUs with Per Task GPU Datawarehouse
• Single, shared DataWarehouse does not scale with problem

complexity
• increasing DW size, meant more device synchronization

• Solution: per task DataWarehouses on GPU
• no sharing or atomic operations required
• can overlap comp and comm in a thread-safe manner

Brad Peterson

Allows rapid execution
Of GPU TASK <
1microsecond order of
magnitude speedup

before

after

Abstractions for Portability and Node Performance

• Use Domain Specific Language Nebo -weak scales to all of Titan 18K
GPUs and 260K cpus

• Use Kokkos abstraction layer that maps loops onto machine
efficiently using cache aware memory models and vectorization /
Openmp

• Both use C++ template metaprogramming for compile time
data structures and functions

• While Nebo allows users to solve problems within language
framework, Kokkos allows users to modify code at loop
level and to optimize loops and good memory placement

15

Incremental refactor to Kokkos parallel patterns/views
Replace patch grid iterator loops

for (auto itr = patch.begin(); itr != patch.end(); ++itr) {
IntVector iv = *itr;
A[iv] = B[iv] + C[iv];}

parallel_for(patch.range(), LAMBDA(int i, int j, int k) {
A(i,j,k) = B(i,j,k) + C(i,j,k)});

Kokkos – Uintah Infrastructure

BECOMES

Dan Sunderland, Alan Humphrey

Refactored grid variables to expose
unmanaged Kokkos views Uses the
existing memory allocations and
layouts Removes many levels of
indirection in existing
implementation.

Future work using managed
Kokkos views for portability all
components benefit

2x speedup on 72 cores
For RMCRT already

OLD

NEW

Uintah
Applications

Task Graph

Runtime
System
+ Key
External
Modules

Target
Architecture

Simulation
Controller

Scheduler

Load
Balancer

DSL: NEBO

PIDX

VisIT

CPUsGPUs Xeon Phis

Task

Data
Warehouse

hypre linear solver

Kokkos loops UQ Drivers ARCHES

Kokkos loops

Kokkos memory
“views”

Kokkos
Infrastructure

Use Kokkos abstraction layer
that maps loops onto machine
specific cache friendly data
layouts and has appropriate
memory abstractions

Resilience Joint Work
With NSF XPS Project

• Need interfaces at system level to
address :

• Core failure – reroute tasks
• Comms failure – reroute message
• Node failure – need to replicate

patches use an AMR type approach in
which a coarse patch is on another
node. In 3D has 12.5% overhead
Interpolation is key here

• Core slowdown - move tasaks
elsewhere . 10% slowdown auto
move Respa SC 2015 workshop
paper

• Need to address possible MTBF of
minutes ? Or do we?

• Early user program TACC Intel KNL
Aditya Pakki, Sahithi Chaganti, Alan Humphrey John Schmidt

Summary

• Seven abstractions are all important for portability, scaling and
for not needing to change applications code . Showing that this
approach works at scale is a key outcome for our project

• Scalability will still require tuning the runtime system.
• Performance Portability: use Kokkos for rewriting legacy

applications Phi and GPU ongoing. Aiming at Coral + Apex ++
• Design Study using 350M cpu hr INCITE award in 2016
• Using packages for scalable I/O (768K cores) Utah PIDX and linear

algebra ongoing but GPUs problematic for linear solver
community

• Resilience ongoing experiments but perhaps not now expected
to be such a problem?????

	�Solving Petascale Turbulent Combustion Problems with the Uintah Software
	 Phil Smith(PI) Dave Pershing MB
	Slide Number 3
	Slide Number 4
	 Simulations of Clean coal Boilers using ARCHES in Uintah
	Uintah Programing Model for Stencil Timestep
	Slide Number 7
	Uintah: Unified Heterogeneous Scheduler & Runtime node
	Scaling Results�Mira 5/22
	Radiation Overview
	Multi-Level AMR GPU RMCRT
	Better use of GPUs with Per Task GPU Datawarehouse
	Better use of GPUs with Per Task GPU Datawarehouse
	Abstractions for Portability and Node Performance
	Kokkos – Uintah Infrastructure
	Slide Number 16
	Resilience Joint Work �With NSF XPS Project
	Summary

