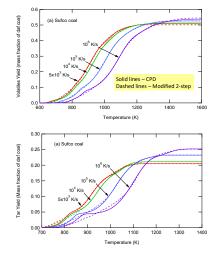


Small (30 µm) particles.

Medium (60 µm) particles.

Large (90 µm) particles.


Pyrolysis

- CPD model predicts volatiles and tar as function of coal type, T, and dT/dt
- Surrogate pyrolysis model needed

Solution: Modified 2-step

$$\begin{split} \frac{d(\alpha_{coal})}{dt} &= -(F_1k_1 + F_2k_2)\alpha_{coal} \\ \frac{d(\alpha_{vol})}{dt} &= (F_1Y_1k_1 + F_2Y_2k_2)\alpha_{coal} \\ F_n &= e^{\left(\sum_{i=0}^{5} c_{i,n}[X_v]^i\right)} \\ \frac{d(\alpha_{tar})}{dt} &= \left(F_{1,tar}Y_{1,tar}k_{1,tar} + F_{2,tar}Y_{2,tar}k_{2,tar}\right)\alpha_{coal} \end{split}$$

• Can fit CPD model predictions of volatiles well for multiple heating rates heating rate

Coal Particle Combustion

Thomas H. Fletcher, David Lignell
Troy Holland, Alex Josephson, Andrew Richards
Chemical Engineering Department
Brigham Young University, Provo, UT
SSAP Symposium 2015, Santa Fe, NM

Char Conversion

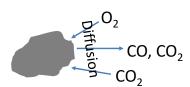
- Complex surface chemistry
- Heat of rxn
- · External and pore diffusion
- · Sintering, ash inhibition

$$2C + O_{2} \xrightarrow{} C(O) + CO$$

$$C + C(O) + O_{2} \xrightarrow{} CO_{2} + C(O)$$

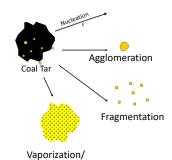
$$C(O) \xrightarrow{} CO$$

$$C + CO_{2} \xrightarrow{} C(O) + CO$$


$$C(O) \xrightarrow{} CO$$

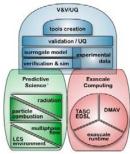
$$C + H_{2}O \xrightarrow{} C(O) + H_{2}$$

$$C(O) \xrightarrow{} CO$$


$$C + 2H_{2} \xrightarrow{} CH_{4}$$

- CBK Features (from Hurt)
 - · Decreasing rate with increasing conversion
 - · Annealing, ash inhibition
 - Originally included statistical kinetics
 - Effectiveness factor for pore diffusion
 - · Particle size distribution
- Char Conversion Kinetics (CCK)
 - Based on CBK/E and CBK/G (from Liu and Niksa)
 - Multiple surface reactions
 - · Multi-component transport
 - Random pore model
 - · Global sensitivity analysis
 - · Generate a surrogate model

Soot


- Coal tar soot is different than soot from light
- Soot in flame regions can radiate significant amount of heat away from flame to walls
- Soot mainly comes from coal tar, but at high temperatures acetylene becomes more important
- Alex Brown's soot model implemented in Arches

Condensation

Carbon Capture Multidisciplinary Simulation Center (CCMSC) team

