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OUTLINE

* Introduction: UQ-predictive modeling

* Bound-To-Bound Data Collaboration

* Introductory case: Energetics of water clusters

* Full-blown case: Combustion of natural gas




THE KEY CHALLENGE:

PREDICTION




“Model predicts reasonably well the experimental behavior”
“Model matches the experimental data”

“...excellent agreement between model and data.”

“The model predictions match reasonably well the experimental data”

“Model predicts data” ?

“Model falls short in predicting experimental data”

“The prediction matches very well with experimental data”

“Simulation agrees well with the data”
“The model well predicts the data”

“Good agreement was found between the model and the data”




ANDREA SALTELLI
SILVIO FUNTOWICZ

When All Models
Are Wrong

More stringent quality criteria are needed for models used at the
science/policy interface, and here is a checklist to aid in the
responsible development and use of models.




Modeling and Predicting Behavioral Dynamics on the Web

WWW 2012

Lyon, France
Kira Radinsky*; Krysta Svore’, Susan Dumais’,
Jaime Teevan', Alex Bocharov!, Eric Horvitz!
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PREAMBLE

* Predictive — UQ-Predictive
* Physics-based models with the focus on data
*\alidation is part of the process

* Dimensionality reduction is part of the process

* Practicality — use of surrogate models (Emulators)

* Data/Models

* Access, sharing, documentation, ...

* Reproducibility




model

(dif eq, nonlinear)




model

(dif eq, nonlinear)













BOUND-TO-BOUND DATA COLLABORATION
(B2B-DC)

— an optimization-based framework for combining models
and data to ascertain the collective information content

xl,min < X1 < xl,max

experimental uncertainties prior knowledge on parameters




INTRODUCTORY CASE:
PREDICT IONIZATION POTENTIAL OF WATER CLUSTERS

Phys Rev Lett 112: 253003 (2014)




QUANTUM-CHEMISTRY APPROACHES

empirical: force-field — guessed potential, empirically fitted; ...

*semi-empirical HF — quantum “core” with some terms replaced by
parameters fitted to data (AM1, RM1, PM3, PM6, ZINDO, ...)

*DFT with fitted parameters: meta-GGA (Truhlar, M05,M06,M11,...),
double-hybrid DFT (Grimme), ...

Exe = (1= ) B 4 o B + (11, ) EY 4 EX

“ ) .. ~_ model-based UQ '
* “static” outcome: the optimized model trAINING  e—)  blind

needs (constant) retuning data\ prediction

parameters /

*the optimum is not unique!
e partial loss of information (two-step process)




B2B-DC

Solve for:

THE JOURNAL OF CHEMICAL PHYSICS 136, 244306 (2012)

Ab initio determination of the ionization potentials of water clusters
(H20), (n = 2—6)

nd Daniel
PO. Box 22

use AE intervals computed for
dimer, trimer, tetramer, and
pentamer

to predict AE interval of hexamer




Ev. =(1-a)E™" +aEy" +(1- B)E" + PE;

e e T }high—leveltheory
vie | o .. 7 result (or experiment)

-~

HededVBRIGNEGH easib)e Set

Source Min Max Range

Over Feasible Set 267.7 269.7 2.0
Segarra-Martietal. | 265.9 270.0 4.1




FULL-BLOWN CASE:
COMBUSTION CHEMISTRY OF NATURAL GAS

* mixture of mostly methane with other light gases

* lowest emissions among fossil fuels; no soot;
smallest carbon footprint

evarious, expanding sources (biofuels, artificial synthesis,...

* plenty and cheap; booming US (and world) economy

*technology issues/needs

* varying compositions — hard to categorize empirically

e prediction needs: emissions, combustion efficiency, ...




Methane Combustion: CH, +2 0O, = CO, + 2 H,0

experiments

Foundation
* A physically-based model

* The network is complex, but the governing
equations (rate laws) are known

* Uncertainty exists, but much is known where
the uncertainty lies (rate parameters)

* Numerical simulations with parameters fixed to
certain values may be performed “reliably”

* There is an accumulating experimental
portfolio on the system

* The model is reduced in size for applications

numerical simulations




PREDICTION:
ignition delay
in HCCI engine
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B2B-DATA COLLABORATION

Experiment, E
LL<y<U

Dataset unit

Vs NG
Model

Dataset Y3 parameters

{Ue}

%) X1

V1

Dataset imposes constraints X, forms n-dimensional hypercube

L, <M, (x)<U,,Ve X i S X S )

Feasible set of x,
If empty, inconsistent, otherwise, consistent




experiment/theory constrain feasible set

prior knowledge

bounds on x,




a realistic feasible set:

a set of individual uncertainties does not
represent the true compound uncertainty




SURROGATE MODELS (EMULATORS)

* build surrogate models for

(rather than for overall objective)

parameters

* construct global objective from
individual responses (higher fidelity)

2 .
b = Z W( computed Y observed ) — Hlxln

all responses A

2 2
~~ aO + a1x1 + a2X2 + o o 0 + a1’2x1.X2 + e o o + a1’1x1 + a2’2X2 + o o o

surrogate model




SURROGATE MODELS (EMULATORS)

* build surrogate models for individual
responses
(rather than for overall objective)

parameters

* construct global objective from
individual responses (higher fidelity)

2 .
b = Z W( computed Y observed ) — Hlxln

all responses A

|sensitivity| (xuncertainty)

dimensionality reduction

2 2
~~ aO + a1x1 + a2X2 + o o 0 + a1’2x1x2 + e o o + a1’1x1 + a2’2X2 + o o o

surrogate model




SURROGATE MODELS (EMULATORS)

* build surrogate models for individual
responses
(rather than for overall objective)

parameters

* construct global objective from
individual responses (higher fidelity)

2 .
b = Z W( computed Y observed ) — Hlxln

all responses

dimensionality reduction

dimensionality of optimization




BOUND-TO-BOUND UQ METHODOLOGY

Uncertainty is constrained by:

e prior knowledge of parameters,| xe 7, the “J{ cube”
* observed data/models, M(x)eD, the “D cube”

Prediction model: f(x)

—establish possible range of f(x), constrained by I)g!]_lll f(x) f}}j} f(x)
M(x)eD M(x)eD

Computable bounds, Computable bounds,
easily verified as valid . easily verified as valid

p:= min f(x) F = max f(x) Iffan(_j M are quadratic, then
xeH xeH the mIn and max problems — SDP
M(x)eD M(x)e’D ; p
\ v Y, N v J and p’s and 7’s bounds are
Hard-to-solve Hard-to-solve » computable

optimization ptimization

* easily verified as valid

* same for their global sensitivities




A dataset is consistent if the Feasible Set is nonempty;
i.e., there exists a parameter vector that satisfies:

¢ all parameters are within prior bounds, H -
- <x <
x2,min < 'x2 < x2,max H

X1

+* all model predictions are within experimental bounds

L, < M,(x) <U,

X3

V',

e

*¢ numerical measure of consistency

CD = maxy
xeH
Lo(1-y) <M,(x) <U,(1-y), Ve




CONSISTENCY MEASURE

J. Phys. Chem. A 108:9573 (2004)




DISCRIMINATION AMONG MODELS

Wiesner et al. 1996 Lemon et al. 2003
27 active variables 34 active variables

consistent
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J. Phys. Chem. A 110:6803 (2006)




SENSITIVITY COEFFICIENTS
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Sensitivity of uncertainty in predicting ¥
tO uncertainty in observing Y,

z
F:

T
=
:




sensitivity

H+02 - O+ OH
OH+CO —» H+ CO2

CH3 + CH3 — H + C2H5

H + C2H4 + (M) — C2H5 + (M)
H + CH3 + (M) — CH4 + (M)
OH + CH3 — CH2* + H20
C2H5 + 02 — HO2 + C2H4
H+ 02 + H20 — HO2 + H20
HCO + H20 — H+ CO + H20
H+HCO — H2 + CO

HO2 + CH3 — OH + CH30
O+H2 —>H+OH
H+OH+M—H20+M

H+ HO2 — OH + OH

laminar flame speed in a stoichiometric
atmospheric C,Hg-air mixture

J. Phys. Chem. A 112:2579 (2008)

sensitivity of methane
dataset consistency

to uncertainty in model parameters

0.002

s

} JI |
0
1 112131415161718191101 lower bound

to uncertainty in experimental observations

0.6

/’ .
04 .
0.2 ’ ?
0 lower bound

1 11 21 31 41 51 61 71




prediction on the feasible set

MP

Initial prediction
from prior info

Final prediction




prediction interval

is the range of values M, takes over the
set of feasible values of parameters

subject to: -




Combining kinetic and instrumental models,
B2B-DC predicts noisy/weak signals

PREDICTION FEATURE PREDICTION INTERVAL

O Peak Value [2.7,4.3] x 102
O Peak Location [1.9, 2.2] cm
OH Peak Value [3.0, 3.6] x 102

OH Peak Location [1.60, 1.67] cm
C2H3 Peak Value [0.09, 1.15] x 10* ADVANCE LIGHT SOURCE
C,H; Peak Location [0.6, 3.9 ] x102cm FLAME EXPERIMENTS

Time-of-Flight Mass Spectrum

-
o

N
e

lon Counts

5 8 12
Time of Flight (sec)

35t Combust. Symp. 2014




INFORMATION CONTENT OF AN EXPERIMENT

.. . Int. J. Chem. Kinet. 36:57 (2004)
Omiugng lkqoevlet®al Observations

Posterior Range
Prior Range

Range of Y




Given a budget T, determine the best strategy
for reducing the uncertainty in model prediction

C = (Acurrent j —1
A

A

op

, = argmin

total
cost

subject

uncertainty, A

>

Js/5, 20020
g a/S/ N

range predicted for
C,Hg flame speed (cm/s)

Acur)

15
of C\’\A

J. Phys. Chem. A 112:2579 (2008)
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Slavinskaya, et al., 2013, 2014



DISCOVERY OF ACTIVE SUBSPACE OF ACTIVE VARIABLES
THROUGH SAMPLING OF THE FEASIBLE SET

While a M(x) formally depends on all n active

variables, in reality it mostly vary in 7 « n
linear combinations of the variables.

For creating a surrogate of M(x) we would
like to do the design in the r-dimensional

C,H, flat flame (ALS)

12 responses, 51 active variables

10 15 20 25 30
Number of Singular Values

Factor f(x)= g(STx)

Compute gradients of f(x) at points of H

VF(x) Vg (5TxW)
M

V() Vg (5Tx()

G .
( (N x 1) X 1)

L . -

Perform SVD of F; this gives S

Sample r-subspace of H to build
surrogate design




How B2B-DC compares to other methods,
as far as approximations are concerned

* Even in case of rigorous Bayesian, use of a prescribed prior (e.g., Gaussian) underestimates
the uncertainty in prediction (Phillip Stark, “Constraints versus Priors”, 2012)

AND we unlikely to have Gaussian priors!

* Approximations, even seemingly “harmless”,
may lead to substantial differences in prediction
of uncertainty (Russi et al, Chem. Phys. Lett. 2010)

* Optimization-based methods, transferring
uncertainty in two-steps — from data to
parameters and then from parameters to
prediction — necessarily

overestimate the predicted uncertainty __
Baulch et al. 2005




B2B-DC and rigorous Bayesian produce consistent results

An ongoing collaborative study with Example: H2/02

Jerome Sacks, National Institute of Statistical Sciences 21 active variables
Rui Paulo, ISEG Technical University of Lisbon * 12 experimental targets
Gonzalo Garcia-Donato, Universidad de Castilla-La Mancha, Spain * predicting one “blind”

Bayesian

135

0

Bayesian
] Example: GRI-Mech 3.0
* 102 active variables .
* 76 experimental targets H W
« predicting one “blind” [ 1

B 2 B Histogram of Yp, 1e7 samples, "uniform"
sampling ‘F

B2B-DC prediction for this
blind target is [ 1.89 2.12]




PERSONAL OBSERVATIONS

e current inability of truly predictive modeling

— conflicting data in/famong sources

— poor documentation of data/models
—no uncertainty reporting or analysis
—not much focus on integration of data

e resistance to data sharing

—no personal incentives
—no easy-to-use technology

* no recognition of the problem




SUMMARY: B2B-DC

*is mathematically rigorous, numerically efficient, and UQ-rich
approach to analysis of practical systems

*is data-centric, handles heterogeneous data, and is easily scalable to
a large number of data sets

*is scalable to a large number of parameters through Solution
Mapping features, combined with the Active Space Discovery

*establishes a clear measure of consistency among data and models,
and identifies the cause of inconsistency if detected

*“measures” information content of an experiment
—assess an impact of a given or planned experiment (“what if”)
— design new experiments/theory that impact the most

*reduces uncertainties of known and predicts correctly uncertainty of
unknown










ANSWER QUESTIONS

e What causes/skews model predictiveness?

e Are there new experiments to be performed, old
repeated, theoretical studies to be carried out?

e What impact could a planned experiment have?
e What is the information content of the data?

e What would it take to bring a given model to a
desired level of accuracy?




NEED A PARADIGM SHIFT

from algorithm-centric view

to data-centric view

wl




Valley Character of Objective
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ADVANCE LIGHT SOURCE FLAME EXPERIMENTS

Time-of-Flight Mass Spectrum

lon Counts
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(top) Cool et al., Rev. Sci. Instrum. 76, 094102 (2005)
(bottom) Courtesy of Sandia CRF - http://www.sandia.gov/ERN/images/CRF-Science.jpg




“STANDARD' DATA ANALYSIS

Concentration profile

Mole fraction of 02
=]
A7 o
o (y%]

=
-

Integrated Signal Profile for O,

Integrated signal

Data Analysis
y =fxc)

Integrated Signal

Ca I I b rat I O n ) C [;Iigtance fror115Burner (m2rr?) % %




USING INSTRUMENTAL MODEL
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Integrated Signal Profile for O,

Integrated signal

Data Analysis
y =fxc)

Calibration, ¢




USING INSTRUMENTAL MODEL

Integrated Signal Profile for O,

Integrated signal

Instrumental
Model

Calibration, ¢




PREDICTING WEAK SIGNALS

Time-of-Flight Mass Spectrum

O, OH, C2H3
— Peak Value

-
=

lon Counts

— Peak Location

—
L

il 4 |

PREDICTION FEATURE PREDICTION INTERVAL
O Peak Value [2.73, 4.29] x 1072

O Peak Location [1.87,2.20] cm

OH Peak Value [2.97, 3.59] x 1072
OH Peak Location [1.60, 1.67] cm

C,H, Peak Value [0.09, 1.15] x 10
C,H; Peak Location [0.60, 3.90] x 102 cm




SCIENTIFIC METHOD

-experiments prediction
-theory




SCIENTIFIC METHOD

ﬂﬁdmuon

SENSITIVITY ANALYSIS:
What conditions will maximize sens to k?




SCIENTIFIC METHOD

prediction

UNCERTAINTY QUANTIFICATION:
What experiment will be most informative?




challenge: prediction

react%odel

ther and
tra t data

_—> pred'ctu@
|




curse of dimensionality

Volume of sphere
Volume of cube

40 50 60 70

dimension







Data analysis performed

N isolation

leads to loss of information




Bayes theorem:

hypothesis data Jell data hypothesis Jal hypothesis




hypothesis data JRes ol hypothesis

posterior likelilhood prior

model /
analysis




hypothesis data JRes ol hypothesis

posterior likelilhood prior

model /
analysis




ON QUADRATIC SURROGATES OF B2B-DC

* Quadratic surrogates enable mathematically rigorous, numerically efficient,
and UQ-rich approach of B2B-DC to practical systems

* Quadratics work in practice because model parameters are limited
— by physical constraints; e.g., 0 <k < collision limit
— by reaction theory / chemical analogy
— by prior experimental / theoretical studies
— and can be linearized; e.g., by the 0g transformation

Flow Reactar Target 2 Average Errar

* And if they do not work, then

— rational quadratics (“native” with B2B framework)
— a two-level surrogate approach
Q first, use machine learning to build “high-order surrogates”,
e.g., Gaussian Process, Kriging, &-SVM, Polynomial Chaos
Q then, build/use on-demand piece-wise quadratics from
the high-order surrogates

J. Phys. Chem. A 110:6803 (2006)




B2B-DC CAN ACCOUNTS FOR EMULATOR ERRORS

U surrogate
model

M(x) + ¢

fitting
error

L-c< Mx) £ U+¢

L'< Mkx) < U




