Pilot-Scale Investigation of Heat Flux, Radiation and CO Distribution from an OxyCoal Flame

Andrew Fry, Jennifer Spinti, Oscar Diaz-Ibarra, Ignacio Preciado, Teri Draper, Eric Eddings, Terry Ring University of Utah, Institute for Clean and Secure Energy

U.S. Department of Energy, Agreement # DE-NA0002375

2015 AIChE Annual Meeting

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions

CARBON CAPTURE MULTIDISCIPLINARY SIMULATION CENTER

Project Objective

Implementation of exascale computing with V&V/UQ to more rapidly deploy a new technology for providing low cost, low emission electric power generation

V&V/UQ – Verification & Validation with Uncertainty Quantification

BRIGHAM YOUNG

CARBON CAPTURE MULTIDISCIPLINARY SIMULATION CENTER

Project Objective

- V/UQ performed on data produced at 4 scales
 - Bench-scale, Lab-scale (~100 kWth), Large-scale (~1-5 MWth), Pilot-scale (~15 MWth)
- Ultimate goal to design a next-generation 350 MWe oxy-coal boiler
- Year 1 of a 5 year program is complete
- Focus here will be on a 1.5 MWth data set

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions

5.0 MBtu/hr Pilot-Scale Furnace (L1500)

Dual Register Low-NO_x Burner (LNB)

Outer Secondary Air or O₂/FGR Mixture

Inner Secondary Air or O₂/FGR Mixture

Natural Gas (For heat up)

Furnace Cooling Coils and Plates

Cooling Plates (3 installed)

Heat removal by cooling surfaces is determined by measuring cooling water flow and temperature in and out

Radiometer Configuration

Three radiometers are installed opposite the cooling plates. Angle of view Includes only the cooling plate surface

Black body radiator was used to calibrate these devices

Radiometer Configuration

CFLIR SC6700

Infrared Heat Flux Measurement

FLIR infrared camera in the wavelength range of 3825–3975 nm. The camera was calibrated with a blackbody generator, which is a source of known emission, in order to obtain infrared heat flux data.

Experimental Conditions

Targeted and Actual Conditions

	Units	Target	0% Swirl	100% Swirl
Firing Rate	Btu/hr	3.5		
Coal Rate	lb/hr	297.0	297.0	296.9
Primary FGR	lb/hr	450.2	461.9	461.7
Primary O ₂	lb/hr	85.3	86.4	86.3
Inner Secondary FGR	lb/hr	361.9	362.0	362.0
Inner Secondary O ₂	lb/hr	105.9	114.0	106.3
Inner Secondary Temp	۴F	500.0	496.2	502.3
Outer Secondary FGR	lb/hr	1448.6	1440.3	1449.2
Outer Secondary O ₂	lb/hr	422.6	418.2	418.4
Outer Secondary Temp	۴F	500.0	498.6	501.9
0,	%	3.0	2.6	2.9
CO,	%	96.1	85.7	88.2
				

Utah Sufco Coal Composition

C	66.9	
н	4.5	
N	1.2	
S	0.4	
0	13.6	
Ash	7.9	
Moisture	5.6	
Volatile Matter	40.4	
Fixed Carbon	46.1	
HHV, Btu/lb	11,765	

* all values in mass % unless otherwise specified

Difference in CO_2 concentration due to air leakage, which occurs mainly through the FGR recycle fan and is a function of back pressure through the burner. More leakage occurs at 0% swirl condition

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions

Experimental and Predicted Values

Gas temperature profile

We have high confidence in our ability to accurately represent gas-phase and entrained particle properties (emissivity, heat capacity)

Why then the disconnect between model and experiment?

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions

South Cooling Coils

Cooling Coil Data (Change from 0 to 100% Swirl)

North Cooling Coils

Sec 4

220000 220000 0 Swirl 100 Swirl 🛛 0 Swirl 📃 100 Swirl Heat Removal (Btu/hr) 180000 140000 140000 120000 120000 200000 200000 Heat Removal (Btu/hr) 180000 160000 140000 120000 100000 100000 Sec 1 Sec 2 Sec 3 Sec 4 Sec 1 Sec 2 Sec 3 220000 220000 200000 200000 Change from 0% to 100% Section 1 Heat Removal (Btu/hr) Section 2 Swirl Heat Removal (Btu/hr) 180000 180000 Section 3 Section 1 Section 4 Section 2 160000 160000 Section 3 Section 4 140000 140000 Change from 120000 120000 0% to 100% Swirl 100000 100000 12:50:01 12:51:27 12:52:54 12:54:20 12:55:47 12:57:13 12:58:39 13:00:06 12:50:01 12:51:27 12:52:54 12:54:20 12:55:47 12:57:13 12:58:39 13:00:06

Cooling Coil Data (Long Times)

Heat removal through the cooling tubes steadily decreases This is consistent with increasing insulating layer thickness due to deposition

Radiometer Data (Long Times)

Heat flux to radiometers increases steadily over time Wall temperatures are stable Why?

Infrared Heat Flux Data

FLAME

NO FLAME

Ash Deposits

Deposit is extensive For 1 week of testing

Probably peeled off during shut down

CO Distribution

■ 0-2000 ■ 2000-4000 ■ 4000-6000 ■ 6000-8000 ■ 8000-10000 ■ 10000-12000

■ 0-2000 ■ 2000-4000 ■ 4000-6000 ■ 6000-8000 ■ 8000-10000 ■ 10000-12000

Observations

- An accurate prediction of heat flux through heat exchange surfaces requires:
 - Accurate representation of surface properties which are dominated by deposited mineral mater
 - Emissivity, thermal conductivity and deposit thickness must be known accurately
- Predictive tool must include accurate representation of deposit rate and mineral composition

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions

Summary & Conclusions

- An oxy-coal combustion data set was produced to be used for V&V/UQ
- Air Leakage was higher than desired and occurs primarily in the recycle fan
- Heat removal through the coils is sensitive to burner changes and consistent with expected flame behavior

Summary & Conclusions

- Heat removal through the coils decreases continuously due to ash deposition on heat transfer surface
- Radiometer data increases continuously due to ash buildup and change in surface emissivity
- CFD Modeling is Underway
 - Trends in heat flux and temperature are well represented
 - Magnitude is not exact
 - Most likely due to assignment of surface boundary conditions (emissivity, conductivity, etc.)

Summary & Conclusions

- Current efforts include:
 - Measurement of the physical properties of the ash containing surfaces
- For the next round of testing the following modifications will be made:
 - Upgrade of recycle fan to reduce air inleakage
 - Addition of soot blowing for cooling tubes and plates

- Project Overview
- Experimental Setup
- Initial Modeling Efforts
- Heat Removal and Radiation Data
- Summary & Conclusions
- Questions