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Necessity of a detailed char 
model 

•  This work is in support of a PSAAP-2 project 
•  Push exascale computing 
•  Produce a highly detailed simulation of an industrial 

pulverized coal boiler (with quantified uncertainty) 
•  Many complex processes drastically change coal 

conversion and energy release depending on ambient 
conditions and coal structure 
•  Goal: create a detailed model that captures data, then 

propagate important aspects in a surrogate model 



Coal Particle Combustion 

•  Initial heating 
•  Devolatilization/swelling 
•  Char conversion 
•  Mode of burning 
•  Swelling 
•  Annealing 
•  Kinetics 
•  Porosity 
•  Thiele modulus 
•  Devolatilization impact 
•  Built on CBK=>iterations=>CCK=>CCK/oxy 



Sensitive Submodels: Mode of 
burning 

•  A simple method to balance particle diameter and density 
•  Generally effective in the past with simple heuristics 
•  Not sufficient for oxy-coal conditions 

•  Very intense O2 conditions 
•  Non-neglible H2O and CO2 gasification 
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O2 % Black Thunder North Antelope Pittsburgh 8 Utah Skyline 

  O2 CO2  H2O O2 CO2  H2O O2 CO2  H2O O2 CO2  H2O 

12% 0.72 0.25 0.03 0.82 0.16 0.02 0.89 0.09 0.02 0.82 0.15 0.03 

24% 0.79 0.18 0.03 0.85 0.13 0.02 0.87 0.11 0.02 0.82 0.14 0.03 

36% 0.83 0.15 0.03 0.86 0.11 0.02 0.87 0.11 0.03 0.85 0.12 0.04 
Shaddix and Molina, 
Proceeding of the 
Combustion Institute 32 
(2009) 
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Sensitive Submodels: Model of 
burning 

•  More advanced method adapted 
from Haugen et al. 
•  Balance diameter and density based 

on a weighted effectiveness factor 
•  Compute a new “mode of burning” 

at each time step 
•  Enforce the law of conservation of 

mass 

(Haugen et al., 2014; 
Haugen et al., 2015) 



Sensitive Submodels: Particle 
Swelling 

•  Swelling can be drastic or minimal depending on coal 
character and heating conditions 
•  An incorrect swelling model results in incorrect heat and 

mass transfer 
•  Swelling at the very high heating rates of practical 

combustion has typically been incorrectly modeled by 
ignoring the very substantial impact of heating rate on 
bubble formation and popping 
•  The correlation for coal type was also woefully inadequate 



Sensitive Submodels: Particle 
Swelling 

(Shurtz et al., 2011; Shurtz 
et al., 2012) 



Sensitive Submodels: Particle 
Swelling 

Correlation Applicable Range 
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(Shurtz et al., 2011; Shurtz 
et al., 2012) 



Sensitive Submodels: Thermal 
Annealing 

•  The most sensitive submodel 
•  Drastically different based on heating rate, coal type, and 

peak particle temperature 
•  Probably responsible for most of the difficulty in finding 

coal-general kinetic correlations 
•  Two distinct phases 

•  The massive physical and chemical changes due to 
devolatilization 

•  The lesser changes due to gradual carbon sheet re-ordering and 
loss of defects 

 



Sensitive Submodels: Thermal 
Annealing 



Sensitive Submodels: Kinetic 
Parameters 

•  8 step system 
•  All steps tied to R3 and R7 via correlations 
•  For any given coal, 4 kinetic parameters contain plenty of 

flexibility (usually 2 are adequate) 
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(Niksa et 
al., 2003; 
Liu and 
Niksa, 2004)
(Shurtz and 
Fletcher, 
2013) 



CCK Result for Black Thunder 

Tp vs height for Black Thunder in 
12% O2 2 Standard deviations from 
the mean Tp 

Tp vs height for Black Thunder in 36% 
O2 2 Standard deviations from the 
mean Tp 
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CCK/oxy 95 micron Diameter 
Result 

Initial raw coal diameter 
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CCK/oxy Result with Correct 
Diameter 

•  Each observed data point is the average of several hundred 
observations at a specific observation height 

•  Each observed particle has a specific diameter and 
temperature, and the hundreds of observations form a 
particle distribution 

•  The particle distribution is clearly different between 
observation heights, and shows a clear trend (larger 
particles are preferentially observed at later observation 
heights) 

•  The detection system is sensitive to particle emissions, so 
larger, hotter particles are preferentially observed 

•  As smaller particles burn out, the observed particles come 
from a skewed sample of the original distribution 



CCK/oxy Result with Correct 
Diameter 

Post-swelling diameters of char at each height (from data) 
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CCK/oxy Result with Correct 
Diameter 
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Observations, Conclusions, and 
Recommendations 

•  Improved submodels capture the physics of combustion 
well (effective fitting and extrapolation) 

Extrapolated from 12% O2 Oxy-coal Data Extrapolated from 12% O2 Conventional Data 

2500 K 

300 K 

2500 K 

300 K 



Observations, Conclusions, and 
Recommendations 

•  In general, the model fit the data shockingly well 
•  The proper initial particle diameter trends are essential 
•  The annealing model greatly reduces the unpredictability 

and variability seen due to preparation conditions 
Future work 
•  Potential for a feasible parameter space based solely on 

coal proximate and ultimate analysis 
•  Even a naïve correlation of kinetic parameters with NMR 

parameters has promising results 
•  More realistic correlations would require an expanded 

data set and kinetic correlation form 
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Sensitive Submodels: CPD 

•  Chemical Percolation 
Devolatilization 
•  Coal structure and heating rate 

dependent 
•  Thoroughly tested to 

successfully track initial heat-
up and devolatilization 
•  Volatiles that do not escape 

cross-link back into the 
structure of the coal 
•  Integrated and verified to play 

nicely with the other 
submodels (generally within 
0.04 K) 

Burner Location 


