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Abstract 

Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD 

simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture 

technologies either as retrofit technologies or for new construction. However, accurate predictive 

combustor simulations require physically realistic submodels with low computational 

requirements. A recent sensitivity analysis of a detailed char conversion model (Char Conversion 

Kinetics (CCK)) found thermal annealing to be an extremely sensitive submodel. In the present 

work, further analysis of the previous annealing model revealed significant disagreement with 

numerous data sets from experiments performed after that annealing model was developed. The 

annealing model was accordingly extended to reflect experimentally observed reactivity loss due 

to thermal annealing of a variety of coals in diverse char preparation conditions. The model 

extension was informed by a Bayesian calibration analysis. Additionally, because oxy-fuel 

conditions include extraordinarily high levels of CO2, development of a first-ever CO2 reactivity 

loss model due to annealing is presented.  
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Nomenclature 

Parameter(s)  Description 

a A parameter for determining the mean of the annealing activation energy 
distribution   

Ad,0 The initial value of Ad (s-1) 
Ad The preexponential factor of the annealing reaction (s-1)_ 
b A parameter for determining the mean of the annealing activation energy 

distribution   
Bf A factor used to bifurcate the log normal distribution of the annealing 

activation energy 
Br A factor used to bifurcate the log normal distribution of the annealing 

activation energy 
c A parameter for determining the mean of the annealing activation energy 

distribution   
CBK Carbon Burnout Kinetics model 
CCK Carbon Conversion Kinetics model 
Ed The activation energy of some thermal deactivation process (kcal/mol) 
f The fraction of carbon converted (burned) from the char, post 

devolatilization 
fi The fraction of active sites in bin “i" in the thermal annealing model 
HR The initial particle heating rate (K/s) 
HTT The high temperature heat treatment time (s) 
MCR Measured relative coal reactivity (post annealing) 
PCR Model-predicted relative coal reactivity (post annealing) 
p0 An NMR parameter for the fraction of intact bridges in the coal pseudo 

monomer. 
Tpeak Peak particle temperature during heating (K) 
VASTM ASTM volatile yield (wt% daf) 
y The prediction (with uncertainty) of the 

model+discrepancy+observational error 
  
δ The discrepancy between a model and reality, typically due to incomplete 

system knowledge or the ubiquitous, imperfect assumptions used to 
develop a model 

ε The observational error (noise) in experimental observations 
η The model (or an emulator thereof) 
μEd The mean of the annealing activation energy distribution (kcal/mol) 
σ0 The initial standard deviation of the annealing activation energy 

distribution (kcal/mol) 
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σEd The standard deviation of the annealing activation energy distribution 
(kcal/mol) 

 

1. Introduction 

Pulverized coal combustion has accounted for the bulk of global electricity production for 

decades, and the increase in natural gas consumption notwithstanding, current outlooks indicate 

that coal-generated power will play a crucial role for the foreseeable future. As might be 

expected, coal dominates not only electricity generation, but also CO2 emissions. If the 

industrialized world intends to meet targets for emissions reduction, carbon capture and 

sequestration methods are vital. Oxy-fired pulverized coal combustion is one potential piece of 

the carbon capture puzzle. 

Oxy-fired combustion has been reviewed thoroughly elsewhere,1, 2 but essentially involves a gas 

feed stream of high purity O2 with the pulverized coal rather than the conventional air feed 

stream. In pure O2, the gas temperatures become high enough to cause materials problems, so the 

flue gas is typically recycled, producing a local combustion environment that is highly enriched 

in CO2, O2, and (potentially) H2O. Because the flue gas then has a very high CO2 mole fraction 

(and essentially no N2) it is relatively easy to capture prior to sequestration. 

While the oxycoal design may facilitate carbon capture, it also dramatically alters the ambient 

conditions that coal particles experience. This dramatic shift in ambient atmosphere must be 

properly accounted for in models intended to predict oxy-coal design performance. A 

comprehensive single-particle coal combustion model (Carbon Conversion Kinetics or CCK) 

was recently subjected to a global sensitivity analysis.3 The results indicated that the parameters 
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of the thermal annealing submodel were overwhelmingly the most sensitive of the parameter sets 

(relative to char burnout and temperature profile predictions) besides the chemical kinetic 

parameters. The analysis further concluded that the dominant annealing sensitivity was likely to 

be similar in other comparably detailed char combustion models. Based on this observation, the 

state of the art for coal char annealing models was examined, and extensions were explored to 

enable the CCK annealing submodel to capture the results of relevant data. 

In the present work, thermal annealing is used as an umbrella term to include both the radical 

changes in char reactivity due to coal pyrolysis and the lesser (but still substantial) reactivity loss 

induced by thermal treatment of the post-pyrolysis char. These effects may include reactivity loss 

due to changes in coal morphology (swelling, changes in pore structure, molten ash that 

physically plugs pores) and a shift in coal chemistry (cross-linking, loss of reactive groups, 

rearrangement of char carbon structure, loss of inorganic catalytic activity etc.). Such a broad 

definition of annealing is adopted because, at the temperatures of practical coal combustion, it 

may well be infeasible to separate the numerous effects since they occur on similar time scales 

and may be better viewed as continuous rather than discrete events.4 

2. Literature Observations 

The impact of thermally-activated reactivity loss on carbon oxidation was observed decades 

ago.5 Since then, numerous researchers have documented char reactivity loss, 6-13 and developed 

several models to incorporate variable char reactivity in combustion modeling. The available 

annealing literature spans an eclectic mix of carbon-based materials, preparation conditions, and 

char structural changes (both chemical and physical). Though the myriad processes of char 
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annealing are not fully understood, the literature on the subject makes several useful 

observations. 

2.1. Annealing Time Scale 

 Senneca and Salatino14 mapped relative reaction rates of pyrolysis, combustion, and post-

pyrolysis combustion for a wide range of temperatures. Their work confirmed that pyrolysis 

is essentially complete by about 1200 K, well before post-pyrolysis annealing or combustion 

are of significant concern. They also found that annealing and combustion occur on similar 

time scales at around 1800 K. Finally, they showed that post-pyrolysis thermal annealing 

rates are rapid compared to combustion above about 1800 K, which implies that annealing is 

essentially complete before significant char oxidation occurs (at practical combustion 

conditions). 

2.2. Impact of Reactive Gases 

 Senneca et al.15-17 found that, when the char was heated and occasional puffs of O2 were 

added to the system, annealing (as measured by crystallinity observed via HRTEM) was 

significantly inhibited if the heat treatment temperature was less than approximately 1473 K. 

The HRTEM further revealed that activated oxygen complexes would form on the carbon 

layers of the char, but would become more and more sparse at higher temperatures. They did 

not find a similar effect using CO2 puffs instead of O2. 
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2.3. Annealing Regimes  

Senneca et al.4 mapped deactivation regimes between 773 K and 2273 K, and found that 

pyrolysis and cross-linking of the carbon matrix occurred first, followed by higher activation 

energy changes in the carbon molecular structure. This evolving turbostratic structure 

proceeded in both series and parallel. Pyrolysis effects were dominant up to ~1000 K, loss of 

defects between carbon layers dominated between ~1000 and ~1800 K, decreased in-plane 

defects became important between ~1800 and ~2300 K, and crystallite growth occurred 

above ~2300 K. Naturally, each of these regimes contain numerous activated processes, 

resulting in a degree of overlap between regimes. 

2.4. Char Precursor Impact 

Annealing experiments yield somewhat different results for any two precursors, even when 

all other preparation conditions are held constant, i.e., no two coals anneal along exactly the 

same path. This is unsurprising, but conversely, many studies show that heat-treated chars do 

converge towards the same reactivity (i.e., that of graphite). Hurt and Gibbins18 found that 

eight precursors all tended to converge in reactivity at high treatment temperatures, but the 

convergence was most marked in the residuals of actual boiler ash. The authors suggested 

(very plausibly in light of the general literature trends) that this greater convergence and 

annealing of char was due to the intense boiler conditions. 
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2.5. Heating Rate Impact 

 Cai et al.19 studied the impact of heating rate on various precursors, holding other 

preparation conditions fixed, and found that precursors with high tar yield were quite 

sensitive to heating rates between very low heating rates (ca. 1 K/s) up to intermediate 

heating rates of ~1000 K/s, with a plateau above about 1000 K/s. These chars showed a 

substantial increase in reactivity, and the authors theorized that this was due to the enhanced 

porosity that softening, high volatile coals experience with rapid devolatilization, and that 

there is an upper limit to this enhancement. 

2.6. Peak Temperature Impact 

 Shim and Hurt20 observed that the peak temperature experienced by a char particle almost 

entirely dictates the degree of char annealing for a given precursor and heating rate. This is 

certainly due in part to the exponential temperature dependence of the annealing rate, but 

several effects fundamentally alter the distribution of available annealing processes, and can 

also be included in a Tpeak effect. Such effects include whether or not ash fusion temperatures 

were reached (which affects catalysis for both char conversion and rearrangement21-24), or if 

the particle temperature was sufficient to prevent a high concentration of O2 complexes from 

forming on the char surface.17 For practical purposes, many of the effects based on peak 

temperature are irrelevant or complete at high heating rates and temperatures above about 

1500 K. Because many of the relevant data points were taken in the high heating rate/high 

temperature region, and because ash content is diverse between coals, the data may be 
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insufficient to fully capture alterations to the annealing activation energy distribution based 

on Tpeak. 

2.7. Annealing Impacts only the Preexponential Factor 

 Salatino et al.25 found that, under a broad range of preparation conditions, the activation 

energy of the gasification reaction remains essentially constant, and the preexponential factor 

alone is altered by the heat-treatment time-temperature profile. 

2.8. Annealing Impact on both the CO2 and the O2 Reaction 

 Historically, the annealing model has impacted CO2, H2O, and O2 reaction rates with a 

single, shared annealing factor derived in the CBK code and included in the more recent 

CCK code.26-28 To the author’s knowledge, no comprehensive char conversion model has 

ever employed distinct annealing mechanisms and submodels for conversion due to O2 vs 

CO2, or even determined whether or not such a distinction is necessary. Because the oxy-coal 

system includes very high CO2 concentrations, CO2 gasification is not necessarily a 

negligible reactant, and the highly sensitive annealing model must be able to accommodate 

any differences implied by thermal deactivation data. The literature is ambiguous on whether 

or not O2 and CO2 annealing may proceed along different pathways. For example, Liu and 

Niksa29 observed that distinct reactive intermediaries were necessary for CO2 and O2 reaction 

schemes. On the other hand Feng et al.30 determined via XRD (x-ray diffraction 

crystallography) and HRTEM (high-resolution tunneling electron microscope) that, on the 

microstructural level at least, coal chars gasify in the same manner for conversion in both air 

and CO2.  
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3. Experimental 

The annealing model employed in CBK has been frequently reused in comprehensive char 

conversion models. The CBK annealing model was first calibrated to the relative paucity of 

experimental data available at the time, i.e., five papers published between 1973 and 1996 6, 7, 9, 

31, 32 The older data taken over a large time span resulted in highly diverse experimental methods, 

making it quite difficult to arrive at a single, consistent comparison. For example, particle sizes 

varied greatly, the reaction regime may have been zone I or zone II,33 measures of reactivity 

were not uniform, treatment temperatures were generally hundreds of Kelvin lower than practical 

combustion conditions, and some of the precursors were carbon sources other than coal. Also, 

except for the most recent paper listed,6 the data were obtained using exceptionally low heating 

rates (well below 1 K/s) and long heat treatment times (up to 2 hours). These data are potentially 

useful for the regimes they were taken in, but more recent data show clearly that the most 

dramatic and dynamic annealing occurs in the first tens or hundreds of milliseconds, implying 

that annealing models should focus on (or at least include) short timescale data. Fortunately, 

much data has been collected on the millisecond to second timescale in the two decades since 

Hurt et al.28 published the CBK model. Unfortunately, the bulk of these data lack one or more 

crucial model input or output, such as a reasonably well-defined heating rate, comparable 

reactivity measurements, or a recorded proximate and ultimate analysis, etc. Nevertheless, the 

literature contains several times more applicable data now than at the advent of the CBK model, 

which implies the potential for a more broadly applicable, less uncertain annealing model. The 

data discussed here were obtained from a detailed search of the literature. Because the data fill an 

undesirably large table, only a small sampling of the data are presented here. However, because 
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the conversion of graphical data to a tabulated format entailed considerable effort and is likely of 

great value to related model development, the tables are made available elsewhere.34  

3.1. Data for Annealed Char Reacting with O2 

The bulk of available char annealing data pertain to the reactivity of annealed char in O2. The 

relevant experiments were carefully designed to take reactivity data in zone I to examine the 

intrinsic reactivity of various annealed chars in a broad range of preparation conditions. All of 

the data listed below included a proximate and ultimate analysis (see Table 1) as well as details 

on the initial heating rate (HR, or heating rate of the coal particle in K/s) of the coal particles, the 

peak temperature achieved (Tp) , and the high temperature treatment time (HTT). In addition, 

annealing models require a reference char to calculate the relative loss of activity; thus, Table 2 

includes similar data for the reference char as well. The data table also includes the measured 

char relative reactivity (MCR), the relative char reactivity predicted by the model (PCR), and a 

calculated value for p0 (a chemical structure parameter from NMR spectroscopy discussed in the 

model development section and obtained from a correlation detailed elsewhere).35 Because the 

reactivities are relative to some reference char, they are unitless. Again, due to space constraints 

Table 2 contains only a fraction of the data, much of which was used to generate a relevant 

selection of figures in the results and discussion section. The balance of the data are available 

elsewhere.34  

Note that there are a number of char PCR and MCR (predicted and measured relative reactivity 

values) char values that are greater than 1. This is because the annealing decreases the reactivity 

by different amounts depending on time temperature profile, heating rate, peak particle 
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temperature and precursor. Thus, even within a single precursor, there is not always an 

unambiguously most extreme annealing condition to choose as the reference char. However, the 

modeling results and optimization proceed identically regardless of this idiosyncrasy.  

Table 1. Ultimate analysis and ASTM volatiles for annealed char precursors in O2 (wt% daf). 

Coal Name C H O N S VASTM 
Beulah Zap 20 73.2 4.4 20.6 1 0.82 42 
Pocahontas 20 89.8 5 3.4 1.2 0.78 19.2 
Illinois 6 20 78.2 5.5 9.8 1.3 5.4 45.5 
South African 16 80.66 4.51 12.69 1.46 0.73 27.4 
Cerrejon 36 81.76 5.15 11.91 1.82 0.75 40.13 
Pocahontas 37 91.81 4.48 1.66 1.34 0.51 19.54 
Pittsburgh 8 37 84.95 5.43 6.9 1.68 0.91 41.7 
Tillmanstone 19 91.4 4.4 2.2 1.3 0.7 18.1 
Pittsburgh 8 19 83.2 5.3 9 1.6 0.9 41.7 
Lindby 19 81 5.3 11 1.7 1 37.5 
Illinois 6 (APCS)19 77.7 5 13.5 1.4 2.4 47.4 
Illinois 6 (SBN)19 75.6 5.8 14.5 1.4 2.7 47 
South African 38 80.66 4.51 12.69 1.46 0.73 27.4 
High Volatile Bituminous 39 80.33 5.95 10.97 1.44 0.96 44.43 
Pittsburgh 8 40-42 84.95 5.43 6.9 1.68 0.91 41.7 
Blind Canyon 40-42 81.32 5.81 10.88 1.59 0.37 48.11 
Beulah Zap 40-42 74.05 4.9 19.13 1.17 0.71 49.78 
South African 11 82.5 4.6 13.2 1.46 0.73 27.43 
South African 25 82.66 4.51 12.69 1.46 0.73 27.4 
Shenfu 43 80.14 5.52 12.29 1.83 0.22 40.64 
Rhur 22 81.03 5.03 10.48 2.1 1.2 32.91 
South African 38 80.66 4.51 12.69 1.46 0.73 27.4 
High Ash Indian 44 72.82 4.65 19.91 1.79 0.83 50.03 

 

Table 2. Detailed Experimental Data for Annealing Effects on Char Reactivity in O2 

Coal name 
 

PCR MCR p0 
HR  

(K/s) Tp (K) 
HTT 

(s) 

Ref 
HR 

(K/s) 
Ref 

Tp (K) 

Ref 
HTT 

(s) 
Beulah Zap 3.23 25.7 0.65 1e5 1514 2 1e5 2295 2 
Beulah Zap 2.24 22.2 0.65 1e5 1735 2 1e5 2295 2 
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Beulah Zap 1.68 15.0 0.65 1e5 1925 2 1e5 2295 2 
Beulah Zap 1.33 6.70 0.65 1e5 2086 2 1e5 2295 2 
Pocahontas 3.69 22.6 0.70 1e5 1606 2 1e5 2388 2 
Pocahontas 2.55 6.12 0.70 1e5 1809 2 1e5 2388 2 
Pocahontas 2.16 2.68 0.70 1e5 1903 2 1e5 2388 2 
Pocahontas 1.73 1.43 0.70 1e5 2032 2 1e5 2388 2 
Pocahontas 1.44 1.06 0.70 1e5 2152 2 1e5 2388 2 
Pocahontas 1.12 1.00 0.70 1e5 2315 2 1e5 2388 2 

Illinois 6 1.56 42.5 0.45 1e5 1585 2 1e5 2155 2 
Illinois 6 1.39 31.3 0.45 1e5 1731 2 1e5 2155 2 
Illinois 6 1.25 15.5 0.45 1e5 1857 2 1e5 2155 2 
Illinois 6 1.16 6.94 0.45 1e5 1957 2 1e5 2155 2 
Illinois 6 1.10 2.68 0.45 1e5 2006 2 1e5 2155 2 

South African 1.25 2.08 0.67 16.7 1514 120 16.7 1503 1800 
South African 1.22 1.29 0.67 16.7 1465 1800 16.7 1503 1800 
South African 1.29 1.61 0.67 16.7 1438 1800 16.7 1503 1800 
South African 2.17 6.02 0.67 16.7 1173 1800 16.7 1503 1800 
South African 2.86 10.4 0.67 16.7 1173 60 16.7 1503 1800 

Pocahontas 1.46 1.68 0.75 1e4 2073 0.15 1e4 2073 2 
Pocahontas 1.23 1.13 0.75 1e4 2073 0.5 1e4 2073 2 
Pocahontas 8.43 2.92 0.75 1e4 1273 0.15 1e4 2073 2 
Pocahontas 7.27 2.15 0.75 1e4 1273 0.5 1e4 2073 2 
Pocahontas 6.18 1.61 0.75 1e4 1273 2 1e4 2073 2 
Pocahontas 5.55 1.55 0.75 1e4 1273 5 1e4 2073 2 
Pocahontas 3.12 1.80 0.75 1e4 1673 0.15 1e4 2073 2 
Pocahontas 2.64 1.41 0.75 1e4 1673 0.5 1e4 2073 2 
Pocahontas 2.19 1.39 0.75 1e4 1673 2 1e4 2073 2 
Pocahontas 1.93 1.31 0.75 1e4 1673 5 1e4 2073 2 
Pocahontas 2.11 2.12 0.75 1e4 1873 0.15 1e4 2073 2 
Pocahontas 1.77 1.34 0.75 1e4 1873 0.5 1e4 2073 2 
Pocahontas 1.46 1.20 0.75 1e4 1873 2 1e4 2073 2 
Pocahontas 1.29 1.09 0.75 1e4 1873 5 1e4 2073 2 
Pittsburgh 8 1.22 1.49 0.52 1e4 2073 0.15 1e4 2073 2 
Pittsburgh 8 1.12 1.12 0.52 1e4 2073 0.5 1e4 2073 2 
Pittsburgh 8 2.89 5.46 0.52 1e4 1273 0.15 1e4 2073 2 
Pittsburgh 8 2.67 4.53 0.52 1e4 1273 0.5 1e4 2073 2 
Pittsburgh 8 2.44 2.78 0.52 1e4 1273 2 1e4 2073 2 
Pittsburgh 8 2.29 2.79 0.52 1e4 1273 5 1e4 2073 2 
Pittsburgh 8 1.82 3.08 0.52 1e4 1673 0.15 1e4 2073 2 
Pittsburgh 8 1.69 2.33 0.52 1e4 1673 0.5 1e4 2073 2 
Pittsburgh 8 1.50 2.08 0.52 1e4 1673 2 1e4 2073 2 
Pittsburgh 8 1.42 2.03 0.52 1e4 1673 5 1e4 2073 2 
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Pittsburgh 8 1.48 2.84 0.52 1e4 1873 0.15 1e4 2073 2 
Pittsburgh 8 1.37 2.03 0.52 1e4 1873 0.5 1e4 2073 2 
Pittsburgh 8 1.21 1.39 0.52 1e4 1873 2 1e4 2073 2 
Pittsburgh 8 1.15 1.30 0.52 1e4 1873 5 1e4 2073 2 
Tillmanstone 0.77 0.63 0.77 5 1223 5 5e3 1223 5 
Tillmanstone 0.98 0.90 0.77 1e3 1223 5 5e3 1223 5 
Pittsburgh 8 1.47 3.34 0.53 1e3 973 2 5e3 1273 2 
Pittsburgh 8 1.13 2.17 0.53 1e3 1173 2 5e3 1273 2 
Pittsburgh 8 0.99 0.80 0.53 1e3 1273 2 5e3 1273 2 
Pittsburgh 8 0.79 0.34 0.53 1e3 1473 2 5e3 1273 2 
Pittsburgh 8 0.53 0.14 0.53 1e3 1773 2 5e3 1273 2 
Pittsburgh 8 0.83 0.68 0.53 5 1273 2 5e3 1273 2 
Pittsburgh 8 0.93 0.77 0.53 50 1273 2 5e3 1273 2 

Linby 1.31 2.67 0.54 1e3 973 2 5e3 1273 2 
Linby 1.11 1.92 0.54 1e3 1173 2 5e3 1273 2 
Linby 0.98 0.97 0.54 1e3 1273 2 5e3 1273 2 
Linby 0.77 0.47 0.54 1e3 1473 2 5e3 1273 2 
Linby 0.44 0.10 0.54 1e3 1773 2 5e3 1273 2 
Linby 0.75 0.50 0.54 2 1273 2 5e3 1273 2 
Linby 0.91 0.86 0.54 50 1273 2 5e3 1273 2 

South African 5.63 11.51 0.67 15 973 1200 16700 2273 2 
South African 4.58 6.58 0.67 15 1173 60 16700 2273 2 
South African 2.03 4.19 0.67 167 1473 1800 16700 2273 2 
South African 1.21 3.32 0.67 167 1673 1800 16700 2273 2 

 

The data used to calibrate the model were required to have a reactivity measurement that could 

be legitimately compared to the entire data set, which most commonly meant that the reactivity 

was given as a rate of change of normalized mass (i.e., the derivative of the degree of carbon 

conversion, f, with respect to time). Ideally, a complete particle time-temperature profile during 

heat-up would also be available, but given the extremely short time scale of many of the data 

points, it is not generally possible to solve the relevant energy balance to such a high level of 

precision. Instead, the estimated initial heating rate is used, as is common practice in coal-related 
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models that involve heating rate as a parameter. Finally, the data were generally taken between 

30 and 70 % char conversion (i.e., after devolatilization).  

The 70 % conversion boundary was chosen because the later stages of burnout are not fully 

understood. Senneca et al.22 observed that particle reactivity from different particle preparation 

conditions often converged in late-stage burnout, while Hurt et al.28 noted that burnout rates 

changed dramatically in the final  ~15% of char consumption. This may be due to factors such as 

complete annealing, ash inhibition, rising experimental uncertainty near complete burnout, or a 

small fraction of exceptionally inert macerals. A full discussion of these effects is beyond the 

scope of the present work, but in all cases, late-stage burnout data is likely to include non-

annealing effects. Alternatively, if annealing really is complete, then there is no purpose in 

training an annealing model to match irrelevant data. However, this seems unlikely to be the 

case, given that the annealed chars have never been observed to anneal to a perfect graphite 

crystal. Also, the trend of convergent reactivities is more based on extent of conversion rather 

than any factors expected to influence annealing, and the reactivity measurements are made at 

temperatures much lower than the heat-treatment, which implies very little further annealing 

during the low-temperature burnout.  

As for the lower bound, the annealing model was trained only to data of at least 30% conversion, 

where char conversion begins to be measured post-pyrolysis. The first 30% of conversion data is 

excluded due to observed “early-stage” effects. The data show a trend of initially increasing 

reactivity, regardless of preparation conditions, in the first few percent of conversion, with a 

peak typically at ~20-30% carbon conversion. This could be due to plugged pores reopening, 
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adsorbed oxygen complexes releasing from the surface, highly reactive tar that had redeposited 

on the char surface, a peak in char surface area as pores expand, or a combination of many 

factors. This early stage is not well explored, and is complicated by numerous effects, so it was 

deemed inappropriate to select “early-stage” data for the training set.  

As a final note on data selection, a few of the data sources included numerous data points at a 

single preparation condition. Rather than give this handful of experiments undue statistical 

weight, the replicate points were averaged together. This could be considered poor statistical 

practice in that a portion of the data is eliminated, but in this case the wide variety of data 

collection systems certainly introduces various biases that the model cannot (and should not) 

take into account. An overwhelming number of data points with a particular bias is therefore 

likely to prove detrimental to the model overall, even though the replicates would prove 

informative about the variance within that single experiment. 

3.2. The Error Factor 

To accurately assess model success, a quantity termed the “error factor” is defined. The error 

factor is the larger of the ratio of model prediction to experimental measurement or the reciprocal 

of that same ratio. The result is the factor by which the prediction differs from the measurement, 

and by taking the larger value, under-prediction is treated on equal footing with over-prediction 

(i.e., a ratio of PCR/MCR of 0.1 or 10 are both penalized as being off by a full order of 

magnitude). 



17 

 

3.3. Data for Annealed Char Reacting with CO2 or H2O 

In recent years, thermal deactivation of coal char with respect to CO2 and H2O has garnered 

some interest. Annealing data relevant to gasification are still in the minority, but those rate data 

that met the same criteria as the analogous O2 rate data are given below. Almost all of the data 

are for CO2 reactivity, but the set from Jayamaran et al.44 includes a handful of experiments with 

steam. Table 3 contains the relevant proximate and ultimate analysis, while Table 4 contains a 

selection of CO2 and H2O reactivity and preparation condition data. As before, Table 4 contains 

only a subset of the data, and additional data set was compiled, tabulated, and made available 

elsewhere.34  

Table 3. Ultimate Analysis and ASTM Volatiles for Annealed Char Precursors in CO2 and H2O 

Coal Name 
Carbon 

% 
Hydrogen 

% 
Oxygen 

% 
Nitrogen 

% 
Sulfur 

% 
ASTM Volatile 

% 
South African11 82.5 4.6 13.2 1.46 0.73 27.43 
South African25 82.66 4.51 12.69 1.46 0.73 27.4 

Shenfu43 80.14 5.52 12.29 1.83 0.22 40.64 
Rhur22 81.03 5.03 10.48 2.1 1.2 32.91 

South African38 80.66 4.51 12.69 1.46 0.73 27.4 
High Ash 
Indian44 72.82 4.65 19.91 1.79 0.83 50.03 

 

Table 4. Detailed Experimental Data for Char Reactivity in CO2 and H2O 

Coal name 
 

PCR MCR  p0 
HR  

(K/s) 
Tp 
(K) 

HTT 
(s) 

Ref HR 
(K/s) 

Ref Tp 
(K) 

Ref 
HTT (s) 

Shenfu 1.73 1.30 0.51 0.1 1223 1200 1e3 1773 1202 
Shenfu 1.65 1.20 0.51 0.1 1273 1200 1e3 1773 1202 
Shenfu 0.99 0.20 0.51 0.1 1673 1200 1e3 1773 1202 
Shenfu 0.99 0.31 0.51 0.1 1673 1200 1e3 1773 1202 
Shenfu 1.99 1.90 0.51 1e3 1223 1202 1e3 1773 1202 
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Shenfu 1.86 0.53 0.51 1e3 1273 1202 1e3 1773 1202 
South 

African 4.58 5.17 0.67 15 1173 60 16700 2273 2 
South 

African 4.58 4.50 0.67 15 1173 60 16700 2273 2 
South 

African 2.03 2.31 0.67 167 1473 1800 16700 2273 2 
South 

African 2.03 2.31 0.67 167 1473 1800 16700 2273 2 
South 

African 2.03 2.09 0.67 167 1473 1800 16700 2273 2 
South 

African 1.21 1.12 0.67 167 1673 1800 16700 2273 2 
South 

African 1.21 0.93 0.67 167 1673 1800 16700 2273 2 
South 

African 1.21 0.95 0.67 167 1673 1800 16700 2273 2 
Indian 0.93 0.95 0.60 0.667 1273 300 13.3 1273 300 
Indian 0.94 1.05 0.60 1.667 1273 300 13.3 1273 300 
Indian 0.99 1.09 0.60 8.33 1273 300 13.3 1273 300 
Indian 0.95 1.48 0.60 0.667 1173 300 13.3 1173 300 
Indian 0.96 1.16 0.60 1.667 1173 300 13.3 1173 300 
Indian 0.99 1.10 0.60 8.33 1173 300 13.3 1173 300 
Indian 0.93 1.00 0.60 0.667 1223 300 13.3 1223 300 
Indian 0.95 1.07 0.60 1.667 1223 300 13.3 1223 300 
Indian 0.99 1.10 0.60 8.33 1223 300 13.3 1223 300 
Indian 0.93 1.02 0.60 0.667 1273 300 13.3 1273 300 
Indian 0.94 1.06 0.60 1.667 1273 300 13.3 1273 300 
Indian 0.99 0.99 0.60 8.33 1273 300 13.3 1273 300 
Indian 0.95 0.83 0.60 0.667 1173 300 13.3 1173 300 
Indian 0.96 0.79 0.60 1.667 1173 300 13.3 1173 300 
Indian 0.99 0.75 0.60 8.33 1173 300 13.3 1173 300 
Indian 0.93 0.90 0.60 0.667 1223 300 13.3 1223 300 
Indian 0.95 0.97 0.60 1.667 1223 300 13.3 1223 300 
Indian 0.99 1.05 0.60 8.33 1223 300 13.3 1223 300 
Indian 0.93 0.70 0.60 0.667 1273 300 13.3 1273 300 
Indian 0.94 0.91 0.60 1.667 1273 300 13.3 1273 300 
Indian 0.99 1.02 0.60 8.33 1273 300 13.3 1273 300 

 



19 

 

4. O2 Reactivity Model Development, Results, and Discussion 

4.1. Parent Model 

Several authors28, 37, 45 have also produced advanced annealing models. It is not necessary to 

thoroughly examine each of these models, but their common features are of interest. First, these 

models all used some form of distributed activation energy. In general, thermal annealing is the 

collection of processes that spontaneously occur to reduce the reactivity of a highly reactive raw 

coal particle to a relatively inert char particle, and all annealing processes are moving towards 

the thermodynamic minimum of a perfect carbon crystal. The wide range of annealing processes 

implies a distribution of activation energies, which suggests in turn that different portions of an 

activation energy distribution will be highlighted by experiments in different temperature ranges. 

That is, at a given temperature, some reactions will occur instantaneously (those at the low end 

of the distribution), but reactions with the highest activation energies are immeasurably slow. 

Only a subsection of the distribution of reactions will proceed on a time scale similar to the 

experiment, and so data over a range of conditions are necessary for a detailed characterization 

of the annealing activation energy distribution.8, 46, 47 

Unfortunately, no single activation energy distribution form is uniformly accepted, but the log-

normal and gamma distributions are both used in various models.28, 37, 45 These distributions 

include very small activation energies that could result in considerable activity loss even at room 

temperature. Obviously, these low activation energy processes are not observed, and the 

distribution may be truncated to avoid them. Additionally, some deactivation processes that do 

occur at lower temperature would be essentially complete before any practical conversion 
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temperature could be reached. These processes could be included as part of the truncation of the 

energy distribution in the absence of adequate low-temperature annealing data. Finally, reactivity 

loss in these annealing models must be modeled on a relative basis, because the combustion 

reactivity of raw coal at 300 K is indeterminate (i.e., if the temperature is sufficiently elevated 

for appreciable oxidation rates, annealing is already well advanced). Since measuring the 

reaction rate of raw coal is not possible, the absolute loss of reactivity in the annealed coal is 

unknown. Together, these difficulties require that the annealing model be used in conjunction 

with an appropriate initial value of the preexponential factor for the heterogeneous reaction rate 

(where appropriate in this case means self-consistent with reactivity data and the annealing 

model parameters). A submodel should be included to predict the nominal Ao (the preexponential 

factor for conversion of raw coal) as in Hurt et al.28 This requires some explanation, and since 

the annealing model developed below is a direct extension from the model of Hurt et al.,28 Hurt’s 

model is explored in greater detail. The assumptions in Hurt’s model are: 

• The annealing model is valid only with the associated preexponential factor submodel, 

and obviates the need for a truncated distribution. The submodel provides Ao, which is 

then reduced according to a time-temperature profile by the annealing model. 

• The model has the potential to capture both physical and chemical effects, but was 

calibrated with annealing data obtained from inert environments. This assumes that an 

oxidizing environment would have minimal impact on the annealing process, which is 

likely a valid assumption in practical combustion cases because the high heating rate 

causes rapid devolatilization and initially prevents O2 from reaching the surface. 
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• All types of active sites have the same oxidation kinetics. Available data necessitate this 

assumption, but, given the heterogeneous chemistry of coal, it is likely incorrect. 

However, each active site is assigned a different annealing (not oxidation) activation 

energy from the distribution. 

• All sites have the same annealing preexponential factor. 

• Annealing impacts the oxidation preexponential factor only. This assumption is not 

accurate, but it may be reasonable in typical air-fired combustion conditions. 

• All reactivity data are assumed to be measured in zone I. This assumption obviously 

requires some care in data selection. 

In the Hurt model, the deactivation model includes a preexponential factor and a lognormal 

distribution of activation energies. The lognormal distribution is fully defined by a mean and a 

standard deviation. The values of all parameters were determined by fitting the data, but the 

parameters were found to occupy a broad parameter space with no clear, uniquely optimal 

solution. These parameters are constant for all char and all preparation conditions, though Hurt et 

al.28 observed that the assumption of constant parameters is not entirely valid.  

From the observations and assumptions above, Hurt et al.28 surmised that an appropriate 

oxidation preexponential factor model could have the functional form of Equation 1. They dealt 

with the precursor dependence as a separate correlation (Equation 2), which left the annealing 

model as a function of the time-temperature profile only. The annealing model functional 

dependence was determined by apportioning the total (unknown) number of active sites N0 in “i” 

bins each with a unique activation energy, where relative bin size was determined by the 
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lognormal distribution. The annealing model then reduces to a series of i first order kinetic 

expressions, where Ni is the number of active sites in bin i, Ad is the preexponential factor of the 

annealing reaction, and Ed,i is the annealing activation energy associated with bin i as seen in 

Equation 3. 

                                                                           𝐴𝐴𝑜𝑜𝑜𝑜 = f[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑇𝑇(𝑡𝑡)]                                                            (1) 

                                                                        ln (𝐴𝐴0) = 10.96− 0.07136 ∗ C                                                    (2) 

                                                                        
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝐴𝐴𝑑𝑑exp �−𝐸𝐸𝑑𝑑,𝑖𝑖/�𝑅𝑅𝑇𝑇𝑝𝑝��𝑁𝑁𝑖𝑖                                                (3) 

Again, the actual value of Ni is unknown (i.e., there is no way to count the number of actual 

active sites), so Ni is normalized by N0. The model output is the ratio of the number of active 

sites remaining to the initial number of active sites, NA/N0=f[T(t)], where the ratio is known to 

initially be unity. Experimentally, this requires at least two reactivity data points to compare 

model output as a ratio of the two experimental measurements, which cancels the unknown N0 

from the equation and allows the model parameters to be fit to data.  

Ni/N0 initially follows a log normal distribution as in Equation 4. In Equation 4, ln(Ed) is 

considered as a variable rather than Ed, and thus the normal distribution of ln(Ed), yields a log 

normal distribution of Ed, where μEd and σEd are, respectively, the mean and standard deviation of 

the distribution. For any given value of activation energy for bin i (Ed,i), Equation 5 yields the 

ratio Ni/N0 at t=0. Equation 6 is a discretized approximation for i<∞, and holds at t=0, but as 

time proceeds, the series of i ODEs (Equation 7, where fi=Ni/N0) reduces the value fi, so the 

distribution of active sites degrades to some irregular distribution. The sum of fi at any time t>0 
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is some value less than unity, and, at fully kinetically-limited conditions, is directly proportional 

to the relative reactivity of the partially annealed char at a given time t. 

                                    𝑁𝑁�ln(𝐸𝐸𝑑𝑑) ; 𝜇𝜇𝐸𝐸𝑑𝑑 ,𝜎𝜎𝐸𝐸𝑑𝑑�  =
1

𝜎𝜎𝐸𝐸𝑑𝑑√2𝜋𝜋
exp �−

�ln(𝐸𝐸𝑑𝑑) − 𝜇𝜇𝐸𝐸𝑑𝑑�
2

2𝜎𝜎𝐸𝐸𝑑𝑑2
�                                       (4) 

                                              
𝑁𝑁𝑖𝑖(𝐸𝐸𝑑𝑑,𝑖𝑖)
𝑁𝑁0

 =
1

𝜎𝜎𝐸𝐸𝑑𝑑√2𝜋𝜋
exp �−

�ln�𝐸𝐸𝑑𝑑,𝑖𝑖� − 𝜇𝜇𝐸𝐸𝑑𝑑�
2

2𝜎𝜎𝐸𝐸𝑑𝑑2
�                                                  (5) 

                                                                                   �∆𝐸𝐸𝑑𝑑 �
𝑁𝑁𝑖𝑖
𝑁𝑁0
�
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= ~1                                                      (6) 

                                                                     
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝐴𝐴𝑑𝑑exp �−𝐸𝐸𝑑𝑑,𝑖𝑖/�𝑅𝑅𝑇𝑇𝑝𝑝�� 𝑓𝑓𝑖𝑖                                                    (7) 

 

4.2. Conceptual Development 

Considering the aggregate picture presented in the literature, and the experimental data, it is clear 

that coal annealing depends heavily on the precursor, heating rate, treatment time, and peak 

temperature. The literature also clearly highlights several of the most prominent thermal 

deactivation processes (loss of heteroatoms, carbon structure reordering, ash fusion etc.). Such 

diverse physical and chemical changes cannot be adequately captured by a single activation 

energy, at least not for a broad array of preparation conditions and precursors. Unfortunately, 

neither data nor computational power are available in sufficient quantity to rigorously model the 

vast diversity of annealing processes, so a distributed activation energy extended from the prior 

CBK model by Hurt et al.28 is used. The literature observations in section 2 also imply that an 
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annealing model should only affect the preexponential factor in combustion kinetics, and is 

ambivalent on the subject of reactivity loss of O2 vs. CO2. Thus, the addition of an identical 

annealing model is possibly necessary to capture CO2 activity loss (with appropriate parameter 

values tuned to CO2 data). While, the CBK annealing submodel is an excellent starting point, it 

lacks a more subtle point found in recent literature observations. The annealing model as a whole 

depends on time, peak temperature, and heating rate, with the expectation that precursor 

differences fall under the purview of an additional submodel, while the actual distribution of 

activation energies is fixed for all coals and preparation conditions. Both the annealing literature 

and a basic understanding of coal combustion indicate that this is an oversimplification. The 

activation energy distribution simply states the relative abundance of various deactivation 

pathways. The following examples briefly describe why this distribution depends heavily on 

precursor and preparation conditions: 

• In the case of the precursor, coals have widely varying chemical structures, sometimes 

even when their elemental composition is nearly identical. This variation can be observed 

not only between different coal seams, but also within the same seam to some degree. A 

different chemical structure implies a different distribution of annealing pathways. 

• In the case of peak temperature, consider a coal with high catalytic ash content. This ash 

may limit pyrolysis or encourage graphite crystal growth by catalyzing crosslinking or 

carbon crystal rearrangement.21-24 In such a case, the ash will fuse, eliminating the 

catalyzed deactivation pathway, if and only if a sufficient peak temperature is attained. A 

catalyst is defined, in part, by lowering the activation energy of a reaction pathway, so a 
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loss of a catalyst certainly changes the correct form of the distribution of annealing 

activation energies.  

• In the case of heating rate, the importance of initial heating rate on pyrolysis is well 

established. As the extent of pyrolysis shifts for various heating rates, the chemistry of 

the newly formed char necessarily adjusts as well. Again, different char chemistry 

unavoidably leads to a different activation energy distribution. 

Since annealing depends on so many variables, the lognormal activation energy employed in 

CBK and its many successors is intrinsically flawed. This lack of generality was unavoidable 

given the data available to Hurt et al.,28 and while significantly more relevant data are now 

available, the data are far from sufficient to construct a perfect annealing model. However, given 

the arguments of more recent literature and data, it is possible to extend the CBK annealing 

model to include the effects of coal type, heating rate, and peak temperature. As in the Hurt 

annealing model, Equation 4 represents the log-normal distribution of the activation energy, 

which is divided into i “bins” with i activation energies (i=100 was found to be adequate). Ni, No, 

and fi are also computed as discussed previously and shown in Equations 5-7. 

Equation 7 is integrated over a time-temperature profile to arrive at a fraction of remaining 

reactivity, rather than an actual value for post-annealing reactivity. This is because the initial 

reactivity and No are not obtainable experimentally. In contrast to the CBK annealing model, the 

mean and standard deviation of the activation energy used here, along with the preexponential 

factor (Equations 8-10) become functions of coal type, heating rate (HR), and peak temperature 

experienced during heat treatment (Tpeak). 
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            𝜇𝜇𝐸𝐸𝑑𝑑 = f(𝑇𝑇𝑝𝑝, Precursor, HR, reactive gas)                                                                                           (8) 

           𝜎𝜎𝐸𝐸𝑑𝑑 = f�𝑇𝑇𝑝𝑝,𝑝𝑝0, HR, reactive gas�                                                                                                        (9) 

            𝐴𝐴𝑑𝑑 = f�𝑇𝑇𝑝𝑝,𝑝𝑝0, HR, reactive gas�                                                                                                           (10) 

In the equations above, p0 represents a coal-type effect based on chemical structure. While p0 

ranges only between 0 and unity, the majority of coals fall in a range with roughly 30% variation 

(see Figure 1); the model form uses scaled parameters so that the 0-1 range of p0 is not 

overwhelmed by the ~1000-2000 K range that influences the Tpeak parameter. 

 
Figure 1. Measured values of p0 for a variety of coals (from Genetti et al.35). 

4.3. Model Calibration and Optimization 

Having arrived at a theoretical dependency for an extended annealing model, finding the 

functional form relies on a statistical calibration tool, insight from past annealing experiments, a 

good deal of trial and error, and an optimization routine. The statistical calibration tool is 

complex, and numerous publications have been devoted to various iterations, applications, and 
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development of the method. This method is explained only in the briefest, most conceptual 

manner here, with further details available elsewhere.48-51 The calibration can be broken into six 

steps, as demonstrated in Figure 2.  

 
Figure 2. Logic map of the model calibration process 

The first two steps consist of understanding the physical phenomena in question and coding a 

relevant model. Step 1 simply involves building a physical intuition that allows the investigator 

to create a reasonable model and produce well-founded expectations for how the model will 

behave, and how model parameters are interrelated. Step 2 is often an Edisonian attempt to 

capture observations in an acceptably simple model, guided by the intuition developed in step 1. 

The latter four steps require an extended explanation, given in the following four subsections. 

These steps are experimental design (for a computational experiment), model emulation, model 
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calibration, and model results analysis. Note that Equation 11 shows a generic model form for 

Bayesian statistical calibration.  

                y𝑖𝑖 = η(𝐱𝐱𝒊𝒊,𝛉𝛉) + δ(𝐱𝐱𝒊𝒊) + ε𝑖𝑖                                                                                                                       (11) 

In Equation 11, η is a model that depends on both experimental inputs and model parameters 

(typically, η is the statistical emulation of the model designed in step 2). Similarly, δ is a function 

that reflects the discrepancy between model and reality (i.e. it tracks errors introduced by 

imperfect assumptions), and ε is the noise observed in experimental data. 

4.3.1. Computational Experimental Design 

In designing a computational experiment, the first step was to determine model input and 

parameter ranges. In Equation 11, y is the model output (where the model output is the sum 

model predictions (η), model discrepancy from reality (δ), and observational error (ε)). Equation 

11 has a vector of model inputs (x), and a vector of model parameters (θ). In the case of the 

original annealing model, x values were restricted to a time-temperature profile, and θ values 

were limited to the mean and standard deviation of the activation energy distribution and the 

annealing preexponential value. The range of permissible values for each experimental input and 

model parameter was used to set up a Latin hypercube52 sampling scheme. The hypercube 

accepts as inputs the allowed range and probability distribution of each parameter. The range is 

then divided into a specified number of equiprobable intervals, and one parameter value is 

chosen at random from each interval. For example, if 10 runs were desirable, the parameter space 

would be divided into 10 intervals. In the case of a uniform probability distribution, each of the 

10 intervals would be of equal “length” in parameter space, while in the case of a normal 



29 

 

distribution on the parameter space, the intervals near the mean parameter value would be much 

“shorter” than the intervals in the tail. Because each interval contributes exactly one parameter 

value, most of the samples would cluster around the mean, and the low probability sample space 

would not be well explored. The sampling process is executed for each parameter and input (θ 

and x), and the values are then systematically paired to be optimally space filling.52 The result is 

a matrix in which each column “j” contains randomly ordered, unbiased, space-filling samples 

from the range of parameter (or input) “j”, and each row “i" is a set of all necessary input values 

and model parameters for a single computational experiment. In other words, each row of the 

matrix constructs a time-temperature profile and designates a value for the mean, variance, and 

preexponential factor of the annealing activation energy. The number of columns equals the 

number of parameters plus the number of inputs, and the number of rows is the number of 

computational experiments to be performed.  

4.3.2. Statistical Model Emulation 

The calibration procedure requires exploration of model behavior throughout the allowable 

ranges of inputs and parameters. This allows the calibration machinery to reject unsuitable 

parameter space by assigning a low probability to poorly performing regions of the sampled 

space. However, numerous executions of the model are required, and most computational models 

incur a non-trivial computational cost in the case of even moderately high-dimensional parameter 

spaces. Here, model execution costs may be as low as fractions of a second and still be 

considered non-trivial, depending on available computation resources, so models that require 

weeks or months are certainly not feasible. This difficulty is circumvented by implementing a 
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statistical emulator, trained by the results of the computational experiment designed in the 

previous section. An emulator accepts any set of inputs and parameters, and produces outputs 

that approximate the full model. The emulator result is computed very quickly, and includes an 

estimate of output uncertainty. The full annealing model was executed with 400 sets of inputs 

and parameters from the Latin hypercube design discussed above, and the corresponding inputs 

and outputs were used to train a Gaussian process emulator, as described in detail elsewhere.48-50 

In essence, the Gaussian process is a multivariate normal distribution fully defined by a vector of 

mean values and a covariance matrix. In principle, the values of the mean and covariance are 

trained to model outputs such that the Gaussian process can predict the model output for any 

given set of inputs and model parameters. In practice, this may be only partially successful due to 

poor mathematical behavior in the model. Such problematic cases include, for example, a model 

where large, irregular shifts in output correspond to small adjustments in the inputs, or due to a 

poorly explored model parameter space. The model emulator is represented in Equation 11 as 

η(xi,θ), while the other two terms (δ and ε) are additional Gaussian processes.  

4.3.3. Model Calibration 

The terms εi and δ(xi) represent the model discrepancy and experimental error, respectively. The 

experimental error is a collection term for observational error, variation between experiments, 

potential experimental bias, etc., and is used to quantify the uncertainty inherent in the 

experimental data. In annealing experiments, this uncertainty is relatively large. The discrepancy 

term quantifies the ways in which the model fails to match reality, even after all sources of 

experimental error are taken into account. This term enhances the model calibration process by 
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analyzing the difference between the model predictions and experiment, and describing where 

the model fails, to what degree, and with respect to which inputs.  

This may be illustrated with the well-known model for ballistic motion in Equation 12, which is 

derived by integrating the acceleration due to gravity twice with respect to time. 

               𝑥𝑥(𝑡𝑡) =
1
2
𝑔𝑔𝑡𝑡2 + 𝑐𝑐1𝑡𝑡 + 𝑐𝑐2                                                                                                                        (12) 

Here c1 and c2 are the constants of integration and represent initial velocity and position, 

respectively. Assuming c1 and c2 are both zero, the model reduces to x(t)=g/2*t2, and perfectly 

captures the position of a falling object in a vacuum. If such a model were to be calibrated, 

experimental observations would be imprecise, leading to a non-zero εi. Additionally, if the 

experiments did not take place in a vacuum, the results would become increasingly erroneous as 

the drag force increases, but is not accounted for. This discrepancy between model and reality 

would be revealed and attributed to the input, (i.e., time). This is because the lack of drag force 

induces no error at t=0. Instead the error is observed when velocity is non-zero, and is 

exacerbated as velocity increases with time. The low dimensionality of this trivial example is 

amenable to graphical inspection. Simply plotting the calibrated model predictions with the data 

(both with respect to time) would show model discrepancy as t increased. Model discrepancy in 

the case of the falling object also lends itself well to diagnosis via physical intuition, in that drag 

force is a daily experience that can easily be conceptualized. In fact, it is counterintuitive that a 

feather and a bowling ball fall at the same velocity in a vacuum, because daily experience is not 

a vacuum. Similarly, physical phenomena models beyond the range of direct human experience 

are often counterintuitive, and thus difficult to visualize and diagnose, especially when they 



32 

 

incorporate a high-dimensional parameter space. Such models benefit from a quantified model 

misfit with respect to parameters and inputs. 

4.3.4. Calibration Results and Analysis 

In the interest of brevity, the details of the statistical analysis are not given. To summarize, the 

analysis found the CBK annealing model to be overwhelmingly uncertain, which is in fact 

consistent with the statement by Hurt et al.28 in the publication of the original annealing model. 

The model uncertainty was substantially reduced by applying a greater wealth of data, a better 

exploration of parameter space, and a coal structural parameter as a dummy input, but 

considerable uncertainty remained. The dummy parameter had no impact on the model 

whatsoever, but it did allow the statistical machinery to attach a discrepancy to the input, and 

indicate the level of functional dependence an annealing model should have. The subsequent 

analysis indicated that the time-temperature profile and the coal structural parameter were by far 

the largest sources of discrepancy between the model and the data. This was quantified in an 

internal statistical parameter for the covariance matrix of the discrepancy (δ) term. The 

covariance parameter necessary to capture the discrepancy due to precursor structure and the 

time-temperature profile were each about a factor of five greater than discrepancy in other 

parameters. 

The insights from the statistical calibration tools and the observations of the literature led to a 

campaign of informed trial and error to uncover the model functional form (step 6 in Figure 2); 

this ultimately reduced the model uncertainty and average prediction error substantially. The 

extended annealing model is executed precisely as the prior CBK annealing model, with all 
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changes successfully confined to the annealing activation energy distribution and the annealing 

preexponential factor. The model was inspired by literature implications for functional 

dependence on heating rate, Tpeak, and the precursor chemical structure, but balanced with a need 

to minimize the total number of parameters that would effectively be relegated to fudge factors 

in an over-parameterized optimization. Note however, that despite considerable model 

improvement, annealing is still an umbrella term for numerous processes that include enormous 

variability. The current model performs well, given the current data, but substantial 

improvements could be made by both specifying which processes should fall under the auspices 

of annealing, and conducting sharply focused research on the specified processes. 

Equations 13-17 describe the final functional form of the preexponential parameter for annealing 

(Ad), the mean annealing activation energy (μEd), and the standard deviation for the annealing 

activation energy distribution (σEd) (see Table 5 for parameter values). Note that the model 

inputs are p0, HR, and Tp. The values of HR and Tp are given in K/s and K, respectively, but the 

actual inputs are divided by their native units so that all inputs are unitless. The input p0 is 

naturally unitless, and the parameters have the units of ln(μEd) (i.e., ln(kcal/mol)). 

            𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻 < 104            𝐴𝐴𝑑𝑑 =
𝑝𝑝0 ∗ 𝐴𝐴𝑑𝑑,0

ln (𝐻𝐻𝐻𝐻 + 2.7)
                                                                                            (13) 

            𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻 ≥ 104            𝐴𝐴𝑑𝑑 = 𝑝𝑝0∗𝐴𝐴𝑑𝑑,0
ln (104)

                                                                                                             (14) 

             𝑖𝑖𝑖𝑖 𝑇𝑇𝑝𝑝 ≤ 1500            ln�𝜇𝜇𝐸𝐸𝑑𝑑� = a ∗ 𝑝𝑝0 + b + 𝑇𝑇𝑝𝑝 ∗ 𝑐𝑐/1000                                                            (15) 

             𝑖𝑖𝑖𝑖 𝑇𝑇𝑝𝑝 > 1500            ln�𝜇𝜇𝐸𝐸𝑑𝑑� = a ∗ 𝑝𝑝0 + 𝑏𝑏                                                                                        (16) 
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            ln (𝜎𝜎𝐸𝐸𝑑𝑑) =
ln(𝜎𝜎0)
𝑝𝑝0

                                                                                                                                     (17) 

Equations 13 and 14 express the heating rate dependence on the original number of active sites. 

Cai et al.19 found that higher heating rates increased the reactivity of a char considerably with all 

other preparations conditions held constant. The natural log of the heating rate captured the 

reactivity increase well up to about 104 K/s, after which a plateau was reached for all coals 

tested. The increase in activity is speculatively attributed to an increase in micropores during 

increasingly rapid devolatilization. This implies that the annealing model is perhaps not the ideal 

submodel to include this information, but in general, comprehensive char combustion codes do 

not include a submodel to address preparation condition-based pore development. Therefore, the 

umbrella of annealing with built-in preparation condition dependence is the most appropriate 

submodel available. Any model employing an estimate of porosity based on heating rate would 

be well served to eliminate the heating rate dependence of the annealing preexponential factor. 

Note that the heating rate dependence is located in the denominator because Ad describes how 

rapidly annealing proceeds. If the surface area increases by some factor “F”, the number of 

active sites is expected to increase by the same factor “F” (assuming uniform active site density). 

This is captured in the annealing submodel by reducing the rate of site destruction by “F,” where 

F=ln(HR+2.7) (note that F reduces to ~1 at very low heating rates). This is not mathematically 

identical to increasing the number of sites by “F,” but the number of active sites was normalized 

to unity as is appropriate for a lognormal probability density function, and it is undesirable to 

disrupt the normalization. Since the annealing model is far from mathematically perfect in any 

case, it was deemed conceptually adequate to adjust the preexponential factor to decrease the rate 
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of reactivity loss instead. Finally, the structural parameter p0 is included, where p0 specifies the 

fraction of intact bridges in the coal pseudo-monomer. The intact bridge fraction is 

experimentally found via NMR spectroscopy, or derived from a correlation via the proximate 

and ultimate analysis as described by Genetti et al.35, 53 There are four NMR parameters 

commonly used to describe coal structure, all of which appear strongly correlated with each 

other and were found to be equally suitable for a coal structural parameter. The NMR parameter 

p0 was chosen to represent coal structure after only moderate success with the simple ratio of 

carbon to hydrogen from the ultimate analyses. The C/H ratio does not distinguish between 

radically different coal structures with a similar elemental composition, but the NMR structural 

parameter approach has been successfully employed elsewhere 54, 55. 

Equations 15 and 16 are a straightforward linear model to predict the mean (𝜇𝜇𝐸𝐸𝑑𝑑) of the log-

normal activation energy distribution, given coal structure and peak temperature, with the 

addition of some constant, “b.” The only subtlety is that the peak temperature dependence may 

be profitably turned off at peak temperatures above 1500 K, where the literature indicates many 

Tpeak effects were no longer relevant. In fact, a series of models that employed the Tpeak term 

above 1500 K (and turned off  “c” below 1500 K) found that the optimal value of “c” was driven 

towards zero (i.e., Tpeak is not an important parameter input for the mean activation energy above 

1500 K). Equation 17 predicts the standard deviation of the distribution, and, together with 

Equations 15 and 16, fully defines the log-normal activation energy distribution. The model 

standard deviation was found to be relatively constant with respect to Tpeak and heating rate, with 

a direct dependence on char precursor. The functional dependence of σEA on precursor only is 

reasonable as a given coal should have some distribution of activation energies, but Tpeak and HR 
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likely shift the center of that distribution more than they adjust the range. Once μEd and σEd are 

defined, the log-normal distribution is known. After the log normal distribution is defined, it is 

split into a bimodal distribution in accordance with numerous observations of two distinct 

annealing regimes in the literature.36, 56, 57 This is done by the factors Bf and Br, which are both 

optimized values, so the actual location of the bimodal trough is also determined by 

optimization. The factors Bf and Br split the log normal distribution by isolating the activation 

energies in the range: μEd - Bf < μEd <Bf + μEd. The density of active sites within that range is 

divided by Br. In other words, Bf indicates the breadth of a trough in the bimodal distribution 

(centered on the mean), and Br determines the depth of the trough. The formerly log-normal 

distribution is then renormalized, which maintains the total number of initial active sites, but 

allows for a bimodal distribution with an optimized weight between the two regimes.* 

Figure 3 below is a sample log normal distribution that shows the fraction of active sites in any 

given bin. The exact mean and variance of the distribution depends on heating rate, precursor 

NMR parameters, and peak temperature. Figure 4 shows an irregular, bimodal distribution after 

parameters Br and Bf  are applied and the distribution is renormalized. The second figure has two 

striking features. First, the majority of the low activation energy sites vanish. This is not a 

problem in either of the two distributions, because the original log normal distribution resulted in 

a highly exaggerated rate of initial annealing, which was compensated for by using an 

                                                 

* The bimodal distribution factors Bf and Br are a complex series of operations as shown in the script 
“match_reactivity” found at https://github.com/tmholland86/CCK-oxy (LA-UR-17-24629). 

https://github.com/tmholland86/CCK-oxy
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excessively high initial preexponential value. The reduced initial annealing of the second figure 

dispenses with the need for an excessively high initial preexponential factor. The second notable 

feature is that the second peak of the distribution is highly irregular. This indicates that, after the 

very rapid initial annealing, the remaining activated annealing processes have a large number of 

active sites at a high activation energy, so the remaining annealing processes will be relatively 

gradual. 

 
Figure 3. Sample log normal distribution of the fraction of active sites in any given bin. 
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Figure 4. Sample “bimodal” distribution after applying the parameters Br and Bf and renormalizing the distribution. 

4.4. Model Optimization 

Once a reasonable model form was developed, the model parameters were optimized. The 

optimization routine was coded using fmincon in MATLAB, which traversed the bounded 

parameter space of the model in an attempt to minimize an objective function. Thus, the 

annealing data are not fit via a standard linear regression. In fact, the model parameters cannot be 

directly regressed because even the conceptual form of the model is far from linear in its 

parameters, and even if the model could be linearized, such a mathematical transform would 

render a regression statistically invalid. Instead, the optimization routine finds a narrow 

subsection of parameter space containing numerous local minima, many of which lead to 

approximately the same model output. Any vector of parameter spaces that leads to a reasonable 

local minimum is valid, and finding the absolute minimum in a high dimensional, non-linear 

parameter space is essentially impossible. Instead, the optimization is carried out by 

implementing various parameter bounds and constraints, and initializing the optimization from 
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different locations in parameter space. Each optimization required roughly 12 hours on a 2016 

MacBook Air, and, after dozens of optimizations, approximately 1/3 failed (settled on a local 

minimum that was clearly far from the global minimum) and 2/3 succeeded (located local 

minima that were all roughly equal, and presumed to be near the global minimum). Table 5 gives 

the values of the annealing model parameters used in the results section. The optimization 

routine yields a single local minimum. In producing Table 5, the optimization routine was 

executed numerous times with different initial values in the parameter space, and in about half of 

all cases a local minimum in the objective function was found within 5% of the objective 

function value produced by the parameters in Table 5. In almost all other cases, the objective 

value was within 50% of the superior local minima, and there were a handful of optimization 

failures. The particular values in Table 5 were chosen because they were the lowest found, but in 

this model there are numerous essentially equivalent local minima, and an infinite number of 

surrounding points in parameter space that are equivalent for any practical purpose. Note that the 

parameters a and b are on similar scales, while c (relating to the influence of peak particle 

temperature) is roughly an order of magnitude smaller. Since the temperature and NMR 

parameters were scaled to be similar, this indicates the relatively low impact of peak particle 

temperature, which is expected, since most of the available data are at relatively high 

temperature. 

Table 5. Annealing model parameter values. 

Parameter Value Units 
Ad,0 9.71x1011 s-1 

Bf 45.55 kcal/mol 
Br 176.66 - 
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a 0.46 ln(kcal/mol) 
b 1.77 ln(kcal/mol) 
c 7.32x10-2 ln(kcal/mol)/K 
ln(σo) 0.65 ln(kcal/mol) 

 

5. Model Execution Results and Discussion 

The final annealing model predicts the relative reactivity of a char compared to some reference 

char, as discussed previously. This is because reactivity is measured directly, but the number of 

active sites (either initial or final) cannot be measured. Instead, by taking the ratio of reactivity in 

two annealed chars in a zone 1 combustion regime, the ratio of final active sites can be 

determined (relative to the initial active sites). Therefore, each set of annealing data has a single 

char designated as a reference, and the data points are the ratio of the reactivity between each 

char and the designated reference char. The annealing model is considered to be performing well 

when the measured relative reactivity is close to the predicted relative reactivity. Because the 

model parameters were optimized, an objective function was required to quantify “close.” 

Because the annealing data covered a very wide range of coals and conditions, the results cannot 

be conveniently displayed in a meaningful way. Simply plotting the measured and predicted 

reactivities on the ordinate axis (with an index on the abscissa) resulted in an unreadable mess 

due to the variation in scale between experiments. Ultimately, it was decided that several 

measures of model success should be included. A log-scale parity plot is shown in Figure 5 

partially to show all of the O2 data in one compact location, and partially because the original 

CBK annealing model results were displayed on a log parity plot. A linear parity plot has the 

dual difficulties of requiring a very large axis to display the outlier points from the Hurt model, 
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while simultaneously compressing the majority of the points into a tight region not amenable to 

visual inspection. The log-scale plot on the other hand, can be quite misleading and give the 

impression that the extended annealing model developed in the present work is only a minor 

improvement over the prior model. Note that, in accordance with the discussion in the model 

development section, the relative reactivity is used in Figure 5 because the actual degree of 

activity loss can only be observed as a ratio between two chars that received different heat 

treatments. Thus, every data set includes a reference char with a measured reactivity, and the 

ratio of reactivities between the reference char and any other char in the data set is the (unitless) 

relative reactivity. Note that the choice of different reference char does NOT impact the results 

of the model or calibration, but it does change which side of the parity plot (over or under 

prediction of relative reactivity) that any given data point falls. 

 
Figure 5. Parity plot of measured and predicted relative reactivities in O2 for the Hurt et al.28 mod vs the extended 

annealing model 
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In contrast, Table 6 includes the results of the sum-squared error as an equally misleading 

measure. Superficially, the sum-squared error indicates that the extended model is ~2 orders of 

magnitude superior to the prior model, but in reality a relatively small handful of points result in 

enormous error. The best measure of model success, both for an optimization objective function 

and for reasonable model comparison, is referred to in Table 6 as the error factor (which is a 

quantity defined and described in detail in the experimental section). Table 6 includes the mean 

and range of the error factor for entire body of data as well as several subsets. This breakdown 

shows that the extended model is certainly an improvement, but the improvement is closer to a 

factor of four rather than a factor of 100. Additionally, the quartile breakdown shows that the 

extended model performs well across the board with only a small handful of egregious failures, 

while the CBK annealing model has numerous large errors in all but the best performing quartile. 

In other words, the prior (Hurt) annealing model is effectively either on or off, and accurate only 

in a small subset of conditions.  Note that, while it would be desirable to compare the original 

CBK annealing model directly to the extended annealing model, the extended annealing model 

requires more detailed information that was not available in the referenced literature for the Hurt 

model, so direct comparison using the original subset of data from the Hurt model is impossible. 

Table 6. Measures of Extended Model Success Compared with the Hurt et al.28 model for the Entire Annealing Data Set 

 Hurt et al. Model Extended Model 

Model 
Quantification 

Mean Minimum Maximum Mean Minimum Maximum 
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Sum Squared 
Error 

1.45x105† N/A N/A 2.43x103†  N/A N/A 

Error Factor: 
All Points 

6.08 1.00 51.97 2.24 1.00 9.96 

Error Factor: 
Least Successful 
Quartile 

17.28 7.00 51.97 4.44 2.30 9.96 

Error Factor: 
Most Successful 
quartile 

1.13 1.00 1.25 1.10 1.00 1.20 

Error Factor: 
Central 
Quartiles 

2.78 1.25 6.50 1.63 1.21 2.27 

 

On average, the extended annealing model predictions differ by a factor of about 2.24 from 

measured values. An average error of 124% is far from an optimal model, but in comparison to 

past work (with an average error of 508%), it is a significant improvement (a factor of ~4). It is 

worth noting that carbon sources are notorious for enormous variability in their respective 

reactivities. In fact, it seems likely that the umbrella of effects referred to as annealing are 

responsible for such a large range of reactivities. There are insufficient replicates in the data for a 

detailed statistical analyses of variance within individual data sets, but a brief examination of the 

few replicates or pseudo-replicate data points is enlightening. Among these data,22, 58 the 

variation between replicates ranges from roughly 20-50%. Thus, 124% error is not at all 

                                                 

† This is a single value, not a mean of multiple values. 
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unreasonable, and is in fact a substantial stride towards mitigating the vast uncertainty of coal 

combustion rate modeling, perhaps even to the extent that a coal-general kinetic correlation may 

be feasible if derived in conjunction with a comprehensive char conversion model. 

5.1. Model Predictivity 

The present annealing model was developed with a minimal number of adjustable parameters 

specifically to avoid a large number of “fudge factors” that would fit virtually any data set while 

having very low predictive power. However, a model with few parameters is no guarantee of 

predictive power. As observed above, the annealing model employed in CBK and its successors 

often predicted annealing quite far from experimental data, probably because the model was 

calibrated using relatively few data points from a narrow selection of precursors and preparation 

conditions. Given that a substantial amount of uncertainty remains in the current annealing 

model, it was entirely possible that the new model would suffer from a similar handicap. 

Therefore, several data points were initially excluded from the optimization objective function to 

test the model predictivity. In general, the model predicted the new points with remarkable 

success, and when the model parameters were re-optimized with all data points, the new data had 

a minimal impact on the overall model calibration. One such data set is shown below in Figure 6 

(data collected by Jayaraman et al.44 for a high-ash Indian coal). The ordinate axis is the relative 

reactivity NOT the error factor. The error factor (calculated as described in Section 3) in this 

case ranged from 1.00-1.12, with a mean of 1.08. In general, any ratio less than ~2 is considered 

quite good in the context of reactivity loss. The abscissa is potentially misleading in that up to six 

input variables influence each data point (the heating rate, treatment time, and peak temperature 
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for the char particle, and the same three variables for the reference char). However, the peak 

temperature of the char particle is most likely to both change and have a dramatic impact 

between points, so it was deemed the best variable for the abscissa in the absence of six-

dimensional plotting software. Nevertheless, the apparent replicates are not actually identical 

data points. 

 
Figure 6. Model predictions compared to experimental measurements of an Indian coal (data were not used to calibrated 

model). 

 

At first glance, Figure 6 can be misleading. It is natural to intuitively view the annealing values 

close to unity as uninformative. However, an annealing value near unity does NOT indicate a 

lack of annealing. Instead, it indicates that the annealing of the data point and the annealing of 

the reference char were very similar. The agreement in Figure 6 is therefore an exceptional 

example of model success in that it tracks annealing quite well even at conditions or treatment 

times that are very similar. The predictions and data are not identical, and the predictions have a 
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slight but consistent negative bias, which indicates that the annealing model is not exact, but it is 

correctly responding to subtle changes in heat treatment. 

Additional comparisons of predictions and measured data (and associated error factors) are 

shown in Figure 7 and Table 7. In all cases, the ordinate axis is the relative reactivity NOT the 

error factor. The error factor mean and range are reported in Table 7. Figures 7a and b both show 

data from experiments with Pittsburgh 8 coal, but from two different investigators. Figures 7c 

through f show a variety of other coals over the range of experimental data. In general, the model 

predictions are quite good, with obvious outliers at the lowest heat treatment temperatures. The 

poor predictions at low temperature are much worse than the average predictions, and while the 

lack of agreement in this region is undesirable, it is not unexpected. The raw coal precursors are 

quite diverse, and low heat treatment temperatures do not allow the chars to progress as far 

towards the thermodynamic minimum of a perfect graphite crystal. Thus, the mildly annealed 

chars retain greater diversity. Also, low-temperature heat treatments likely do not fuse the ash. 

The chemical identity of the ash is rarely characterized in individual coals, so ash variation 

between char precursors is not reflected in the annealing model. This creates additional model 

uncertainty for low-temperature char preparation because ash has fusion-dependent chemical and 

physical effects on the coal. More importantly, the low-temperature heat-treatment implies a 

drastically different devolatilization process, which significantly alters the chemistry of the char. 

Ultimately, the low-temperature predictions are of far less practical importance, and are not 

cause for significant concern in practical char conversion models. 
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Figure 7. Diverse selection of char relative reactivities (both predicted and measured). See Table 7Error! Reference source 

not found.. 
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Table 7. Error Factors Associated with a Diverse Selection of Coals. 

Coal Min Error Factor Max Error Factor Mean Error Factor 
Pittsburgh 8 37 1.01 1.92 1.41 
Pittsburgh 8 19 1.20 3.84 2.00 
HVB 39 1.06 1.37 1.26 
Lindby 19 1.01 4.50 1.92 
South African 38 1.44 2.73 2.06 
Pocahontas 37 1.00 3.84 1.95 

5.2. Model Failure 

Despite the general success of the model in fitting data (and predicting data it had not yet been 

calibrated to), there were a number of significant model failures (5.1%), defined as model 

predictions greater than a factor of five from the experimental data. Among these failures, all but 

a single point of data had several commonalities. First, all of the data points in question came 

from two authors,20, 40 and both of these authors formed their char in a flat-flame burner. The 

data sets from both authors appeared to have a very high variance, in that supposedly similar 

experiments led to widely different results without a definite trend; however, the actual variance 

cannot be computed, as replicates are not given. Third, both sets of experiments sampled data on 

a short time scale, and fourth, both authors obtained a number of points that agreed remarkably 

well with model predictions, both before and after the questionable data was included in the 

optimization routine. Finally, both data sets included coals that were used by other authors in 

annealing experiments, with vastly different results.  

It is possible that the annealing model is simply unable to predict flat flame burner chars. 

However, given that many of the chars in the same data sets were predicted very accurately, it 
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seems far more likely that the short time scale and sampling limitations in the flat flame burner 

led to noisy data. A sample of the worst model failures and adjacent successes to supposedly 

similar experiments is given in Figure 8 (data from Shim and Hurt20). 

 
Figure 8. Model predictions of the Shim and Hurt data set, both failures and exceptional successes. 

5.3. Sample Model Predictions 

While the extended annealing model was broadly successful in predicting char reactivity loss due 

to preparation and combustion conditions, there was one large data set that consistently failed. 

The failure was not large in terms of error factor, as with the handful of anomalous, erratic 

points. Instead, it was a consistent failure to track a subtle trend in char reactivity with treatment 

time in a Chilean coal.36 Figure 9 shows that the model does reasonably well predicting the 

degree of annealing in an absolute sense, but an additional dimension of treatment time shows 

that the model remains essentially constant with the very small changes in treatment time (shown 

by the vertical distribution of points at any temperature). This was ultimately determined to be 
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the reason that the statistical calibration tool found substantial model discrepancy with treatment 

time. Physically, it is caused by the approximation of the initial heating time-temperature profile. 

Because detailed data were not available to reasonably estimate the time-temperature profile, the 

initial heating rate was used as a crude substitute. In general, the estimate is sufficient, but when 

the heating time is a significant portion of the total annealing time, the error can become 

noticeable. This error was further verified by attempts to fit only the data in Figure 9 without any 

other experimental data, but the results were not improved, even when several different model 

functional forms were attempted. Also, when the data were excluded from the objective function, 

the annealing model predictions did not change notably (and still gave the reasonable predictions 

seen below). Conversely, when the data of Figure 9 were included with all other data, model 

predictions were also not significantly influenced; the extended annealing model simply cannot 

fit the subtle trend of a data set with very short treatment times in the absence of a more accurate 

heating profile. 
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Figure 9. Model predictions and experimental data for Cerrejon coal.36 

5.4. CO2 Model Development and Results 

The literature implied that activity loss to CO2 gasification potentially proceeds along different 

kinetic pathways than O2 annealing. By extension, steam reactivity reduction may also behave 

differently than combustion annealing. In general, CO2 and steam may be neglected as reactants 

in pulverized coal combustion, but the extended annealing model is intended to function in an 

oxy-fuel setting as well, where CO2 and H2O may have appreciable influence on the combustion 

process. Therefore, it seemed prudent to tabulate CO2 annealing data and attempt a similar 

calibration for an alternative annealing model form, or at least determine alternative parameter 

values if the same functional form turned out to be adequate. However, as a matter of curiosity, 

the O2 calibrated annealing model was applied directly to the CO2 and steam data, and in general 

performed astonishingly well considering the lack of calibration. It must be noted that there was 

relatively little CO2 data available, and that one large set of data fit extremely well, forcing the 
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mean error factor down. However, the results in Table 8 and Figures 10-11 clearly show that, 

within the limits of available data, the model is able to predict CO2 and H2O annealing 

adequately even with the parameters calibrated to O2 annealing. Figure 10 contains data for a 

South African Coal, which was also used in several of the O2 data sets, although the CO2 

experiments were from a different lead author and institution.38 This may well have improved the 

uncalibrated model prediction in the case of South African coal, but the uncalibrated model was 

also successful with other coals in the CO2 environment. The same annealing model form and 

parameters therefore seem appropriate for both O2 and CO2 activity loss. Recall that Figure 10 

shows the model predictions, not the error factor, so the model is actually performing even better 

than the plot implies. Figure 11 represents the sole H2O data set available.44 The small sample 

size limits inference, but the model appears to perform exceptionally well for H2O annealing as 

well. Because the model form and parameters captured all available data well (O2, CO2, and H2O 

reactivity) even when the model was calibrated to O2 only, the final model and the values 

reported in Table 5 were calibrated using all available data in all conditions and reactive gases. 

Table 8 – Uncalibrated CO2 and H2O extended model annealing predictions. 

Model 
Quantification 

Mean Minimum Maximum 

Sum Squared Error 268* N/A N/A 

Error Factor: All 
Points 

1.66 1.00 4.96 

                                                 

* This is a single value, not a mean of multiple values. 
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Error Factor: Least 
Successful Quartile 

2.84 2.05 4.96 

Error Factor: Most 
Successful quartile 

1.04 1.00 1.08 

Error Factor: 
Central Quartiles 

1.37 1.09 2.02 

 
Figure 10. CO2 Annealing data and uncalibrated model predictions for a South African coal. 

 
Figure 11. H2O Annealing data and uncalibrated model predictions for an Indian Coal. 
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5.5. Model Implications 

The literature indicates that the vast bulk of annealing occurs very rapidly, followed by a much 

more moderate loss of reactivity due to heat-treatment. The model described here has been 

designed to reflect this trend, which is thought to be due to initial, dramatic annealing during 

pyrolysis, and a lesser degree of annealing during subsequent heat-treatment. The annealing 

model therefore offers flexibility (when employed in a comprehensive coal conversion model) to 

allow char combustion predictions over a broad array of combustion conditions. However, no 

effective, coal-general kinetic correlation exists, so data are generally required to tune coal 

conversion rate constants. If data are available to tune kinetic constants, the initial annealing 

effects are embedded in the data, while the subsequent annealing effects may or may not be 

negligible, depending on coal type and combustion conditions. Thus the annealing model may be 

circumvented entirely in certain conditions, but is of considerable utility in comprehensive coal 

conversion models. In particular, the model shown here has been successfully employed in just 

such a comprehensive model to explain data over a broad range of conditions.55  

Perhaps even more importantly, the literature data used in this work clearly show several orders 

of magnitude in char reactivity change due to char preparation condition, and both the data and 

the model show trends (at high Tpeak) of converging char reactivities for diverse precursors. The 

historical failure of coal-general kinetic correlations has depended in large part upon many 

orders of magnitude of variation in the body of literature data between char reactivities, while no 

truly consistent pattern between proximate and ultimate analysis and char reactivity is readily 

discernible. The enormous impact of preparation condition on char reactivity (and the great 
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inconsistency in char preparation methods in the literature) certainly account for a portion of char 

reactivity variability. It is possible that preparation conditions even accounts for the bulk of 

observed variability, at least at practical (high Tpeak) combustion conditions. If so, the present 

annealing model could potentially account for the preparation condition variability, and allow for 

a coal-general kinetic correlation based on structural parameters and/or the proximate/ultimate 

analysis. 

6. Summary and Conclusions 

A thermal annealing model functional form was developed based on observations supported by 

multiple authors, experimental methods, and detection systems. Qualitatively, coal char 

annealing is found to depend heavily on the time-temperature profile, the initial particle heating 

rate, the peak particle temperature, and the parent coal chemical structure as indicated by the 

NMR parameters. Trends in functional form dependence were quantified by optimizing a 

number of model forms for the annealing activation energy distribution to fit a broad array of 

literature data. The resulting model was shown to be a significant improvement; average error 

decreased to roughly a factor of two rather than a factor of five as compared to the preceding 

annealing model. The improvement is largely due to a model form that accounts for coal 

chemical structure, heating rate, and Tpeak, as well as a much larger data set. Note that both the 

predicted degree of annealing, and the annealing activation energy distribution depend heavily 

on heating rate, Tpeak, and chemical structure. Model functional dependency on HR and Tpeak 

were previously included implicitly in the model form, which integrated a reaction rate at a 

specific temperature for a relevant increment of time. However, a more realistic model must 
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incorporate explicit dependence of the annealing activation energy distribution on HR, Tpeak, and 

chemical structure. For example, ash fusion occurs solely as an effect of Tpeak. Ash fusion in turn 

affects several annealing and char conversion pathways, such as catalyzing carbon crystallite 

rearrangement. If the ash fuses, a catalytic annealing pathway is eliminated, and the distribution 

of activation energies should shift accordingly. Similar arguments can be made for other 

annealing effects such as devolatilization, coal morphology, and coal precursor. 

The annealing model was trained by a selection of 25 different data sets and 167 data points. 

Some data sets were initially excluded to test model predictivity; the model was found to predict 

the excluded data approximately as well as the training data. The model shows rapid decreases in 

char reactivity during heat-up and devolatilization before significant char oxidation occurs, and 

generally matches the decrease in reactivity best at temperatures above 1200 K (and especially 

above 1800 K), which was expected. The dependence on coal type was modeled using a 

chemical structure parameter measured by solid-state NMR spectroscopy. 

While the average error factor was greatly reduced, much of the remaining error is due to a 

relatively few outliers with data at low values of Tpeak. The weaker model results at low 

temperature are thought to be due to both greater diversity and poorer char characterization (i.e., 

annealing is far from complete, and the chars may have unfused ash, catalytic effects, residual 

volatiles, greater crosslinking etc.). Bearing in mind the disproportionate error in low-

temperature experiments, and given that practical combustion occurs are temperatures in the 

range of ~2000-2300 K, the annealing model presented here works especially well in practical 

circumstances. 



57 

 

It was shown that annealing data relevant to CO2 gasification is predicted at an acceptable level 

by the annealing model trained from O2 oxidation reactivity data. This result is somewhat 

surprising as the limited literature data imply that O2, CO2, and H2O active sites may all be 

different.29 However, because current knowledge of coal reaction pathways is woefully 

incomplete, this result is certainly not impossible. The single set of available H2O gasification 

data (with sufficient recorded experimental detail for this model), is also predicted quite well by 

the annealing model trained to O2 oxidation data. 

Despite model improvements, there is still considerable work that could be done to improve the 

annealing model. Such work includes data for an even broader array of coals, data collected over 

a large range of temperatures and heating rates with very short treatment times, and data that 

allow more detailed predictions of the initial time-temperature profile (prior to a fixed 

temperature soak time). There are also numerous other questions of interest that may prove more 

difficult to address. These questions include disentangling the coal swelling models and pore 

development from thermal annealing, a broader study of char ash content on thermal annealing 

(examining both ash quantity and chemical identity), and further investigation into early and late 

burnout effects. Late burnout effects are not related to annealing, but tend to obscure char 

reactivity (for example pore networks that are initially blocked during the metaplast phase, but 

may become unblocked even at a low level of char conversion). 

Finally, it should be emphasized that this annealing model, like most prior literature models, 

impacts only the conversion rate law preexponential factor by decreasing the number of active 

sites available. It was implemented directly in a comprehensive coal char conversion model with 
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the parameters derived in this work (with a remarkable level of success).55 However, the 

comprehensive model typically requires that key kinetic parameters be fit to data, since it lacks 

an effective coal-general reactivity correlation. This is a universal weakness in char conversion 

models, and it should be noted that the annealing model will impact the preexponential factor, so 

optimization or regression of kinetic coefficients for any char conversion model should take 

place after implementing the char annealing model.
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