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Synergistic Programs

• CCSMC- Carbon Capture Simulation 
Multi-disciplinary Center

• Created by PSAAP II, an NNSA 
program

• Oversight and technical support 
from NNSA labs (LANL, SNL, LLNL)

• Primary goal of promoting super 
computing in the community

• CCSI I

• DoE Office of Fossil Energy

• Primary goal of assisting industry in 
making carbon capture a feasible 
reality

• Provides tools for industry friendly 
(small cluster and desktop) models 
and simulation based design

Basic data models from CCSMC are improved via tools designed in CCSI.



Oxy-fuel combustion

• Inject high purity O2

• Recycle the flue gas
• maintains a reasonable temperature
• reduces the volume of the gas to be treated
• results in a more easily captured CO2 stream

• Drastically changes the furnace environment
• CO2, H2O, and O2 all become important
• Radiation, O2 diffusion, and combustion regimes all change
• Endothermic reactions occur concurrently with oxidation

Figure 1: Pulverized Coal Boiler

A potential retrofit technology to give industrial coal power plants a 
relatively cost-effective carbon capture system.



Char Conversion (my work in 
Basic Data Models)

Raw coal heats and reacts in several steps:
• Particle heating (typical industrial heating rates at ~ 105 K/s)
• Devolatilization/Swelling/Crosslinking
• Char conversion 

• Exothermic (O2)
• Endothermic ( CO2 and H2O)
• Needs to be modeled with detailed transport and kinetics
• Current work is focused on the thermal annealing of coal char

My work takes basic data submodels, builds basic data macro-models, and 
propagates the uncertainty.

Figure 2- Pyrolyzed char



Uncertainty Quantification –
General Principles 

Single best fit point

Annealing sub-model curve

Char burnout from 
comprehensive code
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Uncertainty Quantification –
General Principles 

Single best fit point

Annealing sub-model curve

Char burnout from 
comprehensive code

Any calibration 
method accomplishes 
something similar. 
The remainder of 
these slides highlight 
the unique virtues of 
the CCSI tool set.



CCSI Calibration/UQ Paradigm
• General UQ: Find a plausible set of model 

parameter values (θ) that best produce the 
reality of experimental data.

• Bayesian paradigm: put a prior distribution 
on θ and condition on the experimental 
data to refine this prior distribution.

• Represent the physical system as the model 
(η) plus discrepancy function (δ) plus the 
measurement error (ε)

Many traditional UQ methods substantially exaggerate the actual uncertainty, 
and those that don’t exaggerate uncertainty typically fail to account for 
systematic model bias.



Past CCSI UQ Applications – Solvent and 
Sorbent Models

• Sample Equations:
• Thermodynamics (assumed known)
• Mass transport (calibrated)
• Kinetics (calibrated)

Sorbent apparatus schematic

I mention these models very briefly to highlight the flexibility of the tool set.



Prior Distributions – Domain 
Expert Belief about the System

The domain expert had past experience to give him some idea 
about where the true parameters might be.



Past Basic Data Models –
Solvent Posteriors

The domain expert’s initial belief was generally incorrect, but the data as a 
whole led to well defined peaks of parameter density.



My Work – A 
Radically Different Model

• CCK\oxy is single particle model with detailed physics for all stages 
of combustion and gasification from raw coal to complete burnout

• Direct and indirect industrial application
• CCSCM uses exascale computing to optimize industry designs
• Industry directly applies the comprehensive code to train surrogates

• Each sub-model contains uncertain parameters and model 
discrepancy

• The most sensitive parameters are targeted and addressed

The next several slides are a practical example applying the CCSI tool suit to a 
model and relevant data. The output is a calibrated model with informed 
discrepancy from reality and quantified uncertainty.



CCSI UQ Tools –1
Sensitivity Analysis

• Sensitivity analysis over ~25 (confirmed with CCSI 
decomposition of variance tool)

Table 1 – Total sensitivity measures for all O2 conditions and each individual 
condition 

Mean Sensitivity 
Measures 

Sensitivity for O2 
Mole Fraction=0.12 

Sensitivity for O2 
Mole Fraction=0.24 

Sensitivity for O2 
Mole Fraction=0.36 

Variable Importance Variable Importance Variable Importance Variable Importance 
EA 0.74 EA 0.76 EA 0.72 EA 0.75 
N 0.51 N 0.55 N 0.51 N 0.48 
Ω 0.27 Ω 0.40 Ω 0.22 α 0.22 
α 0.20 gd 0.20 α 0.22 σ 0.20 
gd 0.20 tr 0.18 gd 0.21 gd 0.19 
σ 0.18 α 0.18 σ 0.17 Ω 0.17 
tr 0.14 σ 0.17 tr 0.12 tr 0.11 

 

An important first step to refining complex models: Determine which 
submodels are worth the time it takes to improve them.
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Sample data
• The body of literature data 

shows that annealing 
depends on many things, 
but most especially on
• Heating rate
• Soak time
• Peak particle temperature
• Coal precursor

This sample shows that 
annealing conditions (or 
pyrolysis conditions) DO in 
fact have an enormous 
impact.

Sample raw data used in the calibration 
(from a South African bituminous coal, 
Senneca et al. 1999 )



Calibration Step 1:
Define the Model

• k  – the Arrhenius preexponential factor
• EA – the activation energy of bin i
• fi – the fraction of active sites assigned to bin i

Sample “binned” log-normal distribution






Calibration Step 2:
Choose Parameters and Priors

• Choose the parameters and their priors 
• Informed by sensitivity analysis
• In this case, find k and the right activation energy distribution
• Parameters: σ, μ, and k
• Priors limited by the activation energy of amorphous carbon 

reordering to crystalline graphite (~800 kJ/mol) and observed 
rates of activity decrease

Priors contain any past information/experience that lead a domain expert to 
believe parameter values lie in a given range and probability distribution 






Calibration Step 2:
Choose Parameters and Priors

• Literature attempts (past 
experience) found a 
shallow bowl of parameter 
space

• No justification to weight 
the priors, but some 
justification to bound them

Optimized data fit from mid-90’s literature

Figure 4: Original CBK annealing model



Calibration Step 2:
Choose Parameters and Priors

Uniform probability density priors for μ, σ, and k



Calibration Step 3
Train the Emulator

• The emulator is a surrogate model with uncertainty
• It is “trained” using the annealing model outputs and is able to 

predict outputs for the model at any set of input conditions, even 
if the model was not actually run at those conditions

• Every prediction comes with defined uncertainty



Calibration Step 4:
Execute the GPMSA code

• Matrices of model inputs and outputs train the emulator
• The emulator executes tens of thousands of model runs 

to produce posterior distributions
• The posteriors show uncertainty around the parameter 

space

The GPMSA code ultimately shows both model predictions (and attendant 
uncertainty) and model + discrepancy predictions. This allows the engineer to 
quantify how precisely the model predicts data, and how accurately the model 
mimics reality.



Calibration Step 4:
Original Annealing Model with Original Data

Red lines: η only

Black Dots: data points

The initial model does not capture the data at all.



Calibration Step 4: 
Original Annealing Model with Original Data

Red lines: η only

Black Dots: data points

Black Lines: η+δ+ε

With the addition of a large discrepancy, the model mostly (but not 
entirely) captures the data.



Calibration Step 5 (iterative):
• Consider possibilities to reduce discrepancy and error

• More data
• Better quality data
• Better physics in the model
• If the model requires the discrepancy function to match data 

points, the model lacks important physics that should be 
identified and added.

• Here we know that heating rate, peak temperature and coal type 
play an important roll that is neglected by the annealing model. 



Calibration Step 5:
Consider possibilities to reduce discrepancy 

• Reduce ranges from maximum potential values to ranges that only include the data
• Transform variables to more heavily sample the most important regions of parameter 

space

Red lines: η only

Black Dots: data points

A smart exploration of the parameter space can be quite important.



Calibration Step 5:
Improve the Experimental Design

• Reduce ranges from maximum potential values to ranges that include the data
• Transform variables to more heavily sample the most important regions of 

parameter space

Red lines: η only

Black Dots: data points

Black Lines: η+δ+ε

Despite the great improvement, the discrepancy and model still do not 
intersect all points. More is needed.



Calibration Step 5:
Improve the Experimental Design

• Reduce ranges from maximum 
potential values to ranges that 
include the data

• Transform variables to more 
heavily sample the most 
important regions of parameter 
space

μ σ log(k)

When the majority of the  probability density is piled up on a boundary, the 
model is very likely deficient.



Calibration Step 5:
Original Annealing Model with Expanded Data

• Expand the data set (legacy code is common, new data might well be 
available)

Red lines: η only

Black Dots: data points

More data improves the fraction of points that the model can capture, but still 
fails to capture about 1/3 of the data.



Calibration Step 5:
Original Annealing Model with Expanded Data

• Expand the data set (legacy code is common, new data might well be 
available)

Red lines: η only

Black Dots: data points

Black Lines: η+δ+ε

Discrepancies can now capture all the data, and are greatly reduced, but are still 
far from 0.



Calibration Step 5:
Original Annealing Model with Expanded Data

• Expand the data set (legacy code is common, new data might well be 
available)

μ σ log(k)

More and better data sharpen the peaks and narrow the parameter space, but 
no amount of data can overcome a model that has inadequate physics.



Calibration Step 5:
New Annealing Model with Expanded Data

• Manipulate the model form
• Add additional physics

Additional physics (especially more advanced methods to account for heating 
rate and coal type) greatly improve the model.

μ=a*Coal Quantificantion+b a                 b            log(k)



Update CCK\oxy

• Add in the annealing code
• Minor updates to other sensitive parameters (swelling, mode of 

burning, etc.)
• Calibrate kinetic parameters for both gasification and oxidation

• Hope to make the code coal-general
• At the very least we will have incremental improvement and quantify 

the uncertainty

Input:
Coal proximate and 

ultimate analysis and 
environmental conditions

Output: 
Complete particle 

temperature and burnout 
profile, including 
devolatilization



Applications
• CCK\oxy will predict, in detail, the evolution of coal particle 

conversion and temperature in time
• A collection of CCK\oxy runs will serve as easily generated 

data in  combustions conditions to train less flexible global 
models for desktop simulations

Potential form of the global model



Conclusions
• The original annealing model is unable to explain all the data.
• Additional data gives more information about model parameters, 

but not enough. Additional physics were needed.
• In this case, the activation energy curve should become a function of 

coal type, heating rate, and (potentially) peak temperature
• The primary advantages of the uncertainty quantification used here 

are:
1. The outputs include discrepancy to show where and how physics 

need to be improved
2. The outputs are in the form of probability distributions, which is 

conducive to uncertainty propagation
3. The method reduces uncertainty to as low as it can be given the 

data and the model physics (traditional methods often artificially 
inflate sensitivity)



Disclaimer

Disclaimer This presentation was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Government nor 
any agency thereof, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, 
or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof.
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