

SUMMARY/MOTIVATION: TWO SYNERGISIC PROGRAMS

- CCSMC- Carbon Capture Simulation Multidisciplinary Center
- Created by PSAAP II, an NNSA program
- Oversight and technical support from NNSA labs (LANL, SNL, LLNL)
- Primary goal of promoting super computing in the community
- **CCSI** Carbon Capture Simulation Initiative
- DoE Office of Fossil Energy
- Primary goal of assisting industry in making carbon capture a feasible reality
- Provides tools for industry friendly (small cluster and desktop) models and simulation based design

BACKGROUND

•Raw coal rapidly devolatilizes in boiler environments to leave behind a coal char. The morphology and reactivity of the coal char depend heavily on devolatilization conditions.

Pyrolyzed char magnified image

Char Particle Conversion

•Char is converted via exothermic reaction with O_2 and endothermic reaction with H_2O and CO_2 , and requires several sub-models to capture mass transfer and kinetics.

•The boiler environment is substantially different from conventional pulverized coal (air-fired), and it requires extended models to capture the extreme environment

•The char conversion is captured by the CCK\oxy model, the latest iteration in comprehensive char combustion models originating from the CBK model.

Acknowledgements

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002375

Funding for this work was provided by the Department of Energy through the Carbon Capture Simulation Initiative. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,-trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CARBON CAPTURE MULTIDISCIPLINARY SIMULATION CENTER

METHODS

Sensitivity Analysis

- Pick a relevant set of conditions with available data (in this case the high O_2) combustion conditions of Sandia National Labs' entrained flow, flat-flame burner)
- Catalog the list of variables/parameters input or called within the CCK\oxy code
- Separate the parameters into "fundamental" parameters and derived parameters
- Generate a Latin Hyper-cube over all fundamental parameters, varying them throughout their respective parameter space. This allows all parameters to vary simultaneously and crudely capture higher order effects of interacting parameters.
- Execute the CCK\code using values from the hyper-cube
- Analyze the results using 3 methods (simple scatter plot, linear approximation, and partial rank correlation coefficients)

Calibration and Uncertainty Quantification

- Define prior probability density functions for each parameter
- Generate a Latin Hyper-cube of the entire parameter space
- Train the statistical emulator
- Output Gaussian processes for each of η , δ , and ϵ (the model prediction, discrepancy, and error, respectively)
- Also output prior probability density functions for each parameter

Disclaimer

This publication was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Extension and Calibration of Coal Combustion Models

Troy Holland^{1,2}, Sham Bhat², Joel D. Kress² and Thomas H. Fletcher¹ 1 Brigham Young University, 2 Los Alamos National Laboratory

	The simple so	atter plot	had far too	much noi	ise to detect	trends or	correlatio
 T Y² Se te T n 	The linear ap fielded much even parame est The sensitivity honotonicity	proximation more sation ters for all y test is est and magn	on method a sfactory res combination sentially a itude of cha	and partia ults, and ons of com normalize ange in ou	l rank corre consistently nditions, coa ed score from utput induce	lation coe highligh al type, ar m 0-1 me ed by char	efficients ited the san nd sensitiv easuring nge of inpu
Tabla 1	Total con		agunas for a		ditions and	ooh indi	vidual
Table 1 conditio	l – Total sen on	sitivity me	asures for a	ll O ₂ con	ditions and o	each indiv	vidual
Table 1 condition	l – Total sen on in Sensitivity	sitivity me Sensiti	asures for a vity for O ₂	ll O ₂ con Sensiti	ditions and o vity for O ₂	each indiv	vidual
Table 1 condition Mea N Variab	l – Total sen on In Sensitivity Measures	sitivity me Sensiti Mole Fr	asures for a vity for O ₂ action=0.12	ll O ₂ con Sensiti Mole Fr	ditions and o vity for O ₂ action=0.24	each indiv Sensitiv Mole Fra Variable	vidual vity for O ₂ action=0.36
Table 1 condition Mea N Variab EA	L – Total sen on un Sensitivity Measures ble Importance 0.74	Sitivity me Sensiti Mole Fr Variable EA	asures for a vity for O ₂ action=0.12 Importance 0.76	ll O ₂ con Sensiti Mole Fr Variable E _A	ditions and over the second se	each indiv Sensitiv Mole Fra Variable EA	vidual vity for O ₂ action=0.36 Importance 0.75
Table 1 condition Mea N Variab E _A N	L – Total sen on In Sensitivity Measures De Importance 0.74 0.51	Sitivity me Sensiti Mole Fr Variable E _A N	vity for O ₂ action=0.12 Importance 0.76 0.55	ll O ₂ con Sensiti Mole Fr Variable E _A N	ditions and o vity for O ₂ action=0.24 Importance 0.72 0.51	each indiversities Sensities Mole Fra Variable E _A N	vidual vity for O ₂ action=0.36 Importance 0.75 0.48
Table 1 conditionMea NVariabEA N Ω	L – Total sen on In Sensitivity Measures De Importance 0.74 0.51 0.27	sitivity me Sensiti Mole Fr Variable E _A N Ω	vity for O ₂ action=0.12 Importance 0.76 0.55 0.40	Il O ₂ con Sensiti Mole Fr Variable E _A N Ω	vity for O2 action=0.24Importance 0.720.51 0.22	each indiv Sensitiv Mole Fra Variable E _A N α	vidual vity for O ₂ action=0.36 Importance 0.75 0.48 0.22
Table 1 conditionMea NVariab EA NΩ α	L – Total sen on In Sensitivity Measures De Importance 0.74 0.51 0.27 0.20	sitivity me Sensiti Mole Fr Variable E _A N Ω gd	asures for a vity for O ₂ action=0.12 Importance 0.76 0.55 0.40 0.20	ll O ₂ con Sensiti Mole Fr Variable E _A N Ω α	ditions andvity for O2 action=0.24Importance0.720.510.220.22	each indiv Sensitiv Mole Fra Variable E _A N α σ	vidual vity for O ₂ action=0.36 Importance 0.75 0.48 0.22 0.20
Table 1 conditionMea NVariab EANΩαgd	L – Total sen on In Sensitivity Measures De Importance 0.74 0.51 0.27 0.20 0.20	Sitivity me Sensiti Mole Fr Variable E _A N Ω gd t _r	asures for a vity for O₂ action=0.12 Importance 0.76 0.55 0.40 0.20 0.18	Sensiti Mole FrVariable E_A NΩαgd	ditions and of the second s	each indiversities Sensities Mole Fra Variable E _A N α σ gd	vidual vity for O ₂ action=0.36 Importance 0.75 0.48 0.22 0.20 0.19
Table 1 condition Mea N Variab E_A N Ω α g_d σ	L – Total sen on Sensitivity Measures De Importance 0.74 0.51 0.27 0.20 0.20 0.18	sitivity me Sensiti Mole Fr Variable E _A N E _A Ω g _d t _r α	asures for a vity for O₂ action=0.12 Importance 0.76 0.55 0.40 0.20 0.18 0.18	Sensiti Mole FrVariable E_A NΩαgdσ	vity for O2 action=0.24 Importance 0.72 0.51 0.22 0.21 0.17	each indiversities Sensities Mole France Variable E _A N α σ gd Ω	vidual vity for O ₂ action=0.36 Importance 0.75 0.48 0.22 0.20 0.19 0.17

- The mode of burning paramete
- The ash grain size

The variance of the distributed activation energy of the thermal annealing sub-model

The particle residence time

RESULTS (Thermal Annealing Model)

• Start with the original thermal annealing model and data presented in the CBK model.

$$y_i = \eta(x_i, \theta) + \delta(x_i) + \varepsilon_i$$

•Red lines: η only

•Black Dots: data points

•Black Lines: $\eta + \delta + \varepsilon$ (model+discrepancy from reality+error)

•The diagonal shows univariate posterior probability density functions •The off diagonals show the bivariate posteriors •When probability density accumulates on the edge of the sample space, no good fit is found, implying that the model is unable to capture reality

RESULTS (Thermal Annealing Model)

• Improve Results

•Focusing on the most interesting ranges of model operation •Transform the input variables to weight the sampling in the sensitive regions of parameter space (improves emulator prediction) •Add more data if available

•Substandtial but inadequate improvement. More physics are needed.

Further Improve Results

•by incorporating the additional parameters to change the distributed activation energy based on coal type, heating rate, and peak particle temperature.

Sample raw data used in the calibration (from a South African bituminous coal, Senneca et al. 1999)

CONCLUSIONS

- The parameters of the thermal annealing sub-model are the most sensitive. It is debatable whether or not this should be the case, but either way the annealing sub-model must be implemented appropriately, either to reduce the impact it has on the model, or to best capture a very sensitive effect.
- The initial annealing sub-model is grossly inadequate to capture the data, and while additional data and careful parameter exploration help, additional physics are/were needed.