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ABSTRACT: This paper presents a statistical method for model calibration using data collected from literature. The method is
used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two
different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where
soot particles are attacked by H2O or CO2 molecules. Rate data were collected from 19 studies in the literature and evaluated
using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in
modeling. The calibrated consumption model with quantified uncertainty is presented here along with a discussion of associated
implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO2
gasification rates.

1. INTRODUCTION

Modeling of soot formation in combustion systems has been an
extensive area of research over the last several decades. The
emission of particulate matter in combustion processes has
proven to be a significant health concern since these particles
can be taken-up by cells in the lung. Through this absorption,
these particles enter the circulatory system and can lodge in
organs such as the liver, heart, and kidneys, leading to reduced
or altered organ function.1,2 In addition, soot emissions have
become an increasing concern in the environment affecting
cloud formation and climate change.3,4 Within a given
combustion process, the presence of soot can have a significant
impact on radiative heat fluxes5 and hence flame temperature
and pollutant formation.
Given these impacts of soot, extensive studies concerning the

formation and evolution of soot in combustion processes have
been performed, for example, see refs 6 and 7 and references
therein. From these studies, researchers commonly define the
formation of soot to take place in five stages: nucleation,
coagulation, growth, aggregation, and oxidation. Four of these
stages involve the formation and evolution of soot, but only
one, oxidation, deals with the consumption of the soot once it
forms.8 Some of the first investigators of soot oxidation
assumed that soot was consumed solely via reaction of an O2

molecule with the particle surface,9 and oxidation models were
developed based on the O2 concentration. It was quickly
determined that the presence of OH molecules greatly
influenced rates of soot consumption and hence it was included
in oxidation models.10 In more recent studies, emphasis has
been placed on the influence of O radicals in flames,11

particularly in high temperature flames where the O radical
concentration is relatively high.12 However, due to the
coexistence of O with O2 and OH, it is difficult to
experimentally differentiate between oxidation via O versus
oxidation by O2 and OH without molecular modeling. As a

result, many models do not explicitly consider oxidation by O;
rather this effect is implicit in the rates used for O2 or OH.
In recent years, there has been an increased interest in

oxygen-enriched combustion (oxy-fuel combustion) as a means
of enabling carbon capture.13,14 Oxy-fuel combustion often
involves higher temperatures and higher H2O and CO2

concentrations due to flue gas recycling. Most soot models
have historically ignored gasification reactions, which tend to be
small compared to oxidation reactions in common combustion
systems.15 However, this may not be true in oxy-fuel
combustion, where the higher H2O and CO2 concentrations
interact with particle surfaces and lead to increased soot
consumption.16

Current research on soot consumption has placed large
emphasis on the evolution of particle surface reactivity.
Researchers have developed mechanisms reflecting the many
elementary chemical reactions17,18 and mechanical changes19

occurring at the particle surface during consumption. There is
also ongoing research investigating correlations between
particle surface reactivity and the particle inception environ-
ment.20,21

Many experiments have been performed to investigate soot
oxidation in premixed and non-premixed flames. Fewer studies
have been performed of soot gasification. In this paper, we
analyze data from 19 experiments to develop soot oxidation and
gasification models to predict soot consumption behavior over
wide ranges of temperature and composition. To do this, we
use Bayesian statistics to fit reaction model parameters to
specified model forms. The methods presented, however, are
general, and one purpose of this study is to illustrate the
Bayesian method used. This method then allows the model to
be easily extended to account for additional data sets, varying
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model forms, or more generic problems. In addition to the
presentation of the model and Bayesian method, all data sets
and codes are made available as Supporting Information.
The remainder of the paper is organized as follows. Section 2

provides model forms and background information on the data
sets used in the analysis, followed by a description of the
Bayesian method used. Section 3 presents results including
model parameters and uncertainties. Finally, discussion and
conclusions are presented in sections 4 and 5, respectively.

2. METHODS
This section describes the oxidation and gasification models, the data
sets used, and the Bayesian statistical model.
2.1. Oxidation Model. Although the process of soot oxidation is

complicated, this study uses data collected from experiments over the
last several decades to fit a simple global model for use in simulation.
This model is based on irreversible global oxidation reactions including
the following:

+ →C O CO2 2 (1)

+ → +C OH CO H (2)

This global model is both computationally inexpensive and simple but
still reasonably accurate. This model is designed for use in large-scale
simulations sensitive to computational cost. As this consumption
model will only require basic information for evaluation (local
temperature, species concentrations, and particle size), it reduces the
number of transported and computed terms, which can be costly in
large-scale simulations.
This model is not a complete mechanism for soot oxidation and

should be used with caution when considered for simulations outside
of flames and may not be appropriate for detailed simulations with
fully resolved physics. A full mechanism for soot oxidation may contain
hundreds of possible reactions as soot particles react with various
oxidizing species.22 Since these reactions occur at the particle surface,
considerations for gaseous species concentrations, mass transport, and
surface chemistry would all need to be included.
Due to the relatively small size of soot particles, soot oxidation

models usually assume particles are in the free molecular regime and
transport limitations of oxidizing molecules to the particle surface are
ignored. Transport effects may, however, become important for large
soot aggregates, especially in systems such as coal combustion, for
which relatively high soot concentrations may be expected. Besides
external transport, a complete mechanism would need to consider
particle surface and internal structure properties, such as porosity, in a
manner similar to char oxidation models.23 Internal transport of O2
during soot oxidation has also been studied recently.24,25

As the soot particle oxidizes, the surface chemistry changes and
further affects later oxidation reactions.26 When oxidation first begins,
aliphatic branches first react with oxidizing agents due to the weaker
bonds holding these atoms to the particle surface. Once these branches
are all consumed, aromatic structures begin to break up, and
depending on the size of the aromatic cluster, will have varying
activation energies. This means that the oxidation consumption
reactions are not uniform throughout the process of consumption but
will likely vary in rate as the particle surface chemistry changes. This
level of detail, while important to note, is not normally considered in
soot modeling and is not used in the models presented here.
The following simple global model is proposed:
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Here, rox (kgsoot msoot
−2 s−1) denotes the oxidation rate, T is

temperature, A is an Arrhenius pre-exponential factor, P is partial
pressure, R is the gas constant, and E is an activation energy. This
global model is a modified Arrhenius equation with dependence on
temperature and concentrations of O2 and OH. Similar in form to

previously developed models,27 it contains three fitted parameters: AO2
,

EO2
, and AOH. Equation 3 assumes the following:

1. Oxidizing Agents. Oxidation is assumed to occur by O2 and
OH only. This is adequate for the majority of flames. In flames,
it was found that the OH and O account for most of the
consumption of soot,11 while in the TGA experiments nearly all
consumption is attributed to O2 and O.28 In turbulent flames,
higher mixing rates may allow for greater interaction between
O2 and soot than is found in laminar flames. As noted above, O
rates are taken as implicit scales with OH rates in flames and O2
rates in TGA experiments, and so O oxidation is not explicitly
considered here.

2. Transport. Surface concentrations of oxidizing species are
taken as the local concentrations in the surrounding environ-
ment. Any transport effects are then implicit in the pre-
exponential factor for the rate expressions.

3. Surface Chemistry. This model assumes that the surface
chemistry of the particle is uniform and constant in time.
Conversion-dependent changes in rate coefficients are approxi-
mated with an effective activation energy. This effective
activation energy is what is used for the O2 reaction, while
the effective activation energy for the OH reaction is considered
to be negligibly small because OH is such an effective
oxidizer.27

2.2. Oxidation Data. Experiments measuring soot oxidation have
been carried out in many forms, and the literature contains many
different studies. In this work, data were taken from 13 different
sources and typically fall under two different types of studies: those
soot experiments performed with flames and those in a nonflame
environment. Most of the flame environments use a laminar flame; the
nonflame experiments mostly took place through thermogravimetric
analysis (TGA), where soot particles were exposed to an oxidized
environment at elevated temperatures. Table 1 summarizes the
different experiments used for this study including the experimental
method and the number of data points.

Each of these experiments was performed differently, and results
were presented in different ways. As experimental uncertainties were
not reported in the literature, a full analysis considering both model
and experimental uncertainties is not presented here. We have no
reason to believe that the published experimental data that we chose
for this study is unreliable, though certainly all measurements have
error, and the magnitude of such errors may vary among the
experiments. Quantified experimental errors would improve the results
presented in terms of the credible intervals (the Bayesian analog of
confidence intervals) and aid in ascribing variability to data and model
forms. All data needed to be converted to a common format for use in
the proposed model. This conversion of data, referred to as the
instrumental model, involved making some assumptions about the
data or experimental conditions, thus introducing additional
uncertainty. The instrument model extracted a rate (measured in kg
m−2 s−1), temperature (K), and species partial pressures (Pa) from
each data set to be used in the Bayesian analysis. A brief description of
the experiments along with some aspects of the instrumental model
used are discussed below.

Fenimore and Jones29 created soot with a fuel-rich ethylene
premixed flame, and the soot was then fed to a second burner fired
with a fuel-lean premixed flame. Oxidation rates were taken from this
second flame using quench probe measurements. Local gas temper-
atures were reported and used to find local species concentrations
assuming an equilibrium state of the GRI 3.0 mechanism in Cantera, a
suite of object-oriented software tools for problems involving chemical
kinetics, thermodynamics, and transport processes.38

Kim et al.,31,32 Neoh et al.,30 and Xu et al.,34 all measured oxidation
rates in laminar diffusion flames. Local temperatures and concen-
trations of oxidizing agents were reported along the flame. Rates were
measured and converted to collision efficiencies for the different
oxidizing species, and these efficiencies were reported. For our study,
these collision efficiencies were converted back to rates through the
following equation:
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where ηi is the collision efficiency of species i, mcr,i is the mass of
carbon removed due to the oxidation by species i per mole of species i,
Ci is the molar concentration of species i, and v ̅ is the mean molecular
velocity. Data from each of these experiments are assumed to be
independent and were all used to calibrate the Arrhenius pre-
exponential factors and effective activation energies in eq 3 using
Bayesian statistics.
Ghiassi et al.17 used a two stage burner where a liquid fuel mixture

was injected into a premixed-fuel-rich region where soot particles were
formed and then passed into a second fuel-lean region where oxidation
occurred. Particles were collected in the second region and analyzed
using a scanning mobility particle sizer. Rates of oxidation were
extracted from the change in particle size distribution in the fuel-lean
region. Local temperatures and O2 concentrations were measured,
while OH concentrations were modeled and reported by the
experimenters.
Garo et al.22 and Puri et al.33 both measured oxidation rates of soot

using laser-induced fluorescence in a methane−air laminar diffusion
flame. Temperatures, species partial pressures, and oxidation rates
were all reported. Reported values of O2 and OH were not used.
Instead the calculated equilibrium values were used to preserve
consistency between these data and other collected data. Reported rate
values were converted to units of kg m−2 s−1 for evaluation.
Chan et al.35 and Lee et al.9 each measured oxidation rates using a

quench probe in laminar diffusion flames burning propane and natural
gas, respectively. Chan et al. performed additional experiments using a
TGA technique. For the flame, local gas temperatures were reported
along with oxidation rates. Those temperatures were used to find local
concentrations of O2 and OH along the flame front (stoichiometric
point), assuming an equilibrium state of the GRI 3.0 mechanism in
Cantera. The TGA temperature and rates were also reported along
with a partial pressure of O2 in the experimental setup. The reported
rate values were converted to units of kg m−2 s−1 for evaluation.

Higgins et al.36 used a tandem differential mobility analyzer
technique in which monodispersed particles, collected from an
ethylene diffusion flame, were subjected to an elevated temperature
in air and the change in particle diameter was measured. Particle
diameter, temperature, and residence time were reported. Rates were
extracted by the experimenters from these data by the following
equation:

ρ
=

−
r

d d

t

( )

2ox
s 1 2

(5)

where the density of the soot particles (ρs) was assumed to be 1850 kg
m3. The above equation reflects the change of mass per surface area
over a residence time during which the soot particle was exposed to
oxidizer. Partial pressures were again calculated using equilibrium of
the GRI 3.0 mechanism.

Kalogirou and Samaras28 and Sharma et al.37 both used TGA
techniques to record oxidation rates of soot collected from a diesel
engine. Reported data were temperature, O2 concentrations, and
calculated rate constant (k) values of a single-step Arrhenius equation:

=r kXO
n

ox rep 2 (6)

Kalogirou assumed a 0.75 order dependence of O2, while Sharma
assumed a 1.0 order dependence and used the partial pressure of O2
rather than the molar fraction as displayed above. In both cases, the
Arrhenius equation gave rate data in units of s−1. These rates were
converted to our desired rates by

ρ
=r

r d

6ox
ox s 1rep

(7)

where the soot density was again assumed to be 1850 kg m3 and the
initial particle diameter was assumed to be 50 nm.18,27 This equation is
a reflection of the mass of soot consumed per unit of particle surface
area.

2.3. Gasification Model. Gasification differs significantly from
oxidation. Gasification generally has an endothermic heat of reaction,
and most products are only partially oxidized. Examples of global
gasification reactions include

+ →C CO 2CO2 (8)

+ → +C H O CO H2 2 (9)

and these are the reactions used in this work. As with oxidation
reactions, these global reactions are considered irreversible. In the rate
models presented below, the global nature of these reactions is
reflected in nonunity reaction orders. Triatomic species are particularly
important in gasification due to large amounts of potential energy
contained within bond vibrations and rotations.14 Sometimes the
collision of these molecules with a soot particle results in the transfer
of enough energy to break bonds within the soot particle, similar to
thermal pyrolysis. As a result of these collisions and reactions,
gasification tends to produce a larger variety of product species than
oxidation. Products of oxidation are usually limited to CO, CO2, and
H2O. Gasification reactions, on the other hand, will often include these
species along with H2, small hydrocarbons, alcohols, carbonyls, and
other species as products.39

In oxy-fuel systems, the increased concentrations of CO2 and H2O
are of interest. CO2 is the most commonly considered gasification
agent. H2O is often considered to be an oxidizer; however, data in the
literature has shown that the products of soot/H2O reactions are more
indicative of gasification than oxidation.39 Other species are able to
gasify as well, such as NO2, and some research has been done on these
reactions and rates.10,40

Like oxidation, gasification tends to be a complex surface reaction,
dependent on many of the same variables discussed above: transport
effects, surface chemistry, and various gasification agents.41 As stated
previously, gasification occurs via surface reactions with many different
possible species, especially high-internal-energy molecules with energy
to transfer upon collision. The model developed in this study only
considers gasification by CO2 and H2O since these two species are

Table 1. Studies from Which Oxidation Data Were Extracted
for Model Development

study
data
points

oxidizing
agent experiment temp (K)

Fenimore and
Jones, 196729

3 O2 and
OH

premixed ethylene
flame

1530−1710

Neoh et al.,
198130

14 O2 and
OH

laminar methane
diffusion flame

1768−1850

Ghiassi et al.,
201617

54 O2 and
OH

premixed varied-fuel
flame

1265−1570

Kim et al.,
200431

2 O2 and
OH

laminar ethylene
diffusion flame

1735−1740

Kim et al.,
200832

3 O2 and
OH

laminar ethylene
diffusion flame

1892−1916

Garo et al.,
199022

6 O2 and
OH

laminar methane
diffusion flame

1809−1851

Puri et al.,
199433

15 O2 and
OH

laminar methane
diffusion flame

1236−1774

Xu et al.,
200334

15 O2 and
OH

laminar mixed
hydrocarbon
diffusion flames

1775−1900

Lee et al.,
19629

29 O2 and
OH

laminar mixed
hydrocarbon
diffusion flame

1315−1660

Chan et al.,
198735

14 O2 TGA 780−1210

Higgins et al.,
200236

28 O2 tandem differential
mobility analyzer

773−1348

Kalogirou and
Samaras,
201028

6 O2 TGA 823−973

Sharma et al.,
201237

18 O2 TGA 823−923
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thought to be the only gasifying agents in high enough concentrations
to have a notable effect in either air-fired or oxy-fired boiler
environments.
Although soot consumption via oxidation has long been an area of

research, gasification of soot has been much less studied. While
gasification has long been discussed as a possible method for removing
soot build-up on filters in diesel engines, relatively little experimenta-
tion has been done and gasification rates are not well-known. In recent
years, there has been increased interest in solid-fuel gasification for use
in combined turbine cycles. During this gasification process soot has
the potential to form, and researchers have begun exploring soot
models for these systems. Due to the absence of oxygen in these
systems, the only source of soot consumption is gasification. As a
result, there have been a few recent studies that consider gasification of
soot, particularly biomass-derived soots. These experiments, along
with a few others found in the literature, are used to form the
proposed model of this study.
This model consists of two additive rate terms for gasification by

CO2 and H2O:

= +r r rgs CO H O2 2 (10)

=
−⎛

⎝⎜
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H O
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Rates in these equations are defined in units of (kgsoot msoot
−2 s−1).

Equation 11 represents gasification due to attack by CO2 with a
modified Arrhenius equation dependent on temperature and the
partial pressure of CO2. The CO2 order of reaction was extracted from
ref 26. The temperature dependence order was set after a series of
statistical fittings to limit the number of adjustable parameters.
Equation 11 contains two adjustable parameters: the Arrhenius pre-
exponential factor and activation energy, that are fit empirically to data
with Bayesian statistics, as described below.
Equation 12 represents gasification by H2O. Like eq 11, eq 12 also

contains temperature and partial pressure dependencies, two similar
adjustable parameters, and a third adjustable parameter, n, for the H2O
order of reaction. These two equations are analyzed separately because
researchers have studied gasification by CO2 and H2O independently.
2.4. Gasification Data. Table 2 summarizes the gasification data

used here. The data are limited but represent the experimentation

done with regard to soot gasification found in the literature. More data
are desirable to obtain a more robust model, and one purpose of this
study is to present a method that can easily incorporate additional data
as they become available.
Like the oxidation experiments, each of the gasification experiments

was performed differently, and results were presented in various ways.
As for the oxidation experiments, uncertainties for gasification were
not included in the literature; however they are believed to be larger
than the uncertainties found in the oxidation experiments since the
magnitude of gasification rates are smaller than those for oxidation and

thus small measurement errors yield higher relative errors. These
larger uncertainties are reflected in larger uncertainties in the model as
well. In order to use these data in the proposed model, each data point
had to be converted to an instrumental model. The following is a brief
description of each experiment along with some aspects of the
instrumental model used.

Abian et al.16 produced soot particles in an ethylene diffusion flame.
These particles were collected and placed in a TGA under a N2/CO2
environment. The partial pressure of CO2 was set, and temperature
was calculated given the elapsed time and a constant heating rate.
Rates of consumption were measured as the particles were heated, and
these rates were reported as a conversion of the original mass over
time. This reported rate was converted to kg m−2 s−1 using the original
sample mass along with an assumed initial particle diameter of 50 nm.
Soot samples were prepared under different environments by varying
feed rates into the original ethylene diffusion flame; however, it was
found that the gasification rate minimally depended on the
environment in which the soot was produced. For the purposes of
this model, that dependence was accounted for by taking an average
rate across all samples collected in different environments.

Kajitani et al.26 and Qin et al.20 also used a TGA to measure the
reactivity of soot collected from biomass derived soots. Both reported
partial pressures of CO2 within the TGA as well as conversion of soot
particles as the experiment progressed. Rates were extracted using the
given particle heating rates along with an assumed initial particle
diameter of 50 nm. Of particular note is the observation made by Qin
et al. that soot particles have a significant difference in reactivity
compared to char particles. Kajitani et al. remarked that the surface
chemistry of soot seemed to change throughout the experiment but
minimally affected rates of gasification.

Otto et al.42 were the first to experiment on soot gasification by
collecting diesel soot on filters and exposing that soot to exhaust gas
from four CVS-CH cycles. TGA experiments were carried out first
with H2O as the gasifying agent and then repeated with CO2. Rates
(μg m−2 s−1), partial pressures of the gasifying agents, and
temperatures were reported. Otto et al. noted that data collected for
CO2 gasification should be used with caution due to low accuracy.

Arnal et al.43 used a flow reactor to study the water vapor reactivity
of Printex-U, a commercial carbon black considered as a surrogate for
diesel soot. Temperatures and the changing concentrations of CO,
CO2, and H2 were reported. Assuming the only source of carbon in the
system came from the Printex-U, we determined a rate of soot
consumption as the CO and CO2 concentrations increased. Once
again an initial particle diameter of 50 nm was assumed.

Chhiti et al.44 explored soot gasification by H2O in bio-oil
gasification using a lab-scale Entrained Flow Reactor and reported
the soot yield and temperature over time. Soot particles were added to
the reactor and first pyrolyzed in an inert environment over a given
amount of time. This was repeated in an environment containing a
reported partial pressure of H2O. The gasification rate was determined
assuming a constant number of particles that lost mass uniformly from
all particles.

The experiments of Neoh et al.30 and Xu et al.34 included H2O
reactions, and these were described in the previous section.

Data from each of these experiments are assumed to be
independent and are all used to calibrate the parameters in the
gasification model, eqs 10−12. Raw data extracted from experiments
both in oxidation and on gasification, along with details of the
conversions to instrumental models, can be found in the Supporting
Information.

2.5. Bayesian Statistics. The following section describes details of
the Bayesian technique used to calibrate the model parameters. We
recognize that this is a new-enough approach to be unfamiliar to many
readers. Further details on the philosophical underpinnings of
Bayesian inference are provided by Jaynes and Bretthorst.45 A practical
introduction to the basic methodologies of Bayesian inference is given
by Gelman.46

A brief introduction is provided here. Bayes’ law is given by

| ∝ || |f f fx y y x x( ) ( ) ( )X Y Y X X (13)

Table 2. Studies from Which Gasification Data Were
Extracted for Model Development

study
no. of data
points gasifying agent temp (K)

Abian et al., 201216 14 CO2 1132−1650
Kajitani et al., 201026 6 CO2 1123−1223
Qin et al., 201320 3 CO2 305−1261
Otto et al., 198042 2 H2O and CO2 1066−1160
Arnal et al., 201243 6 H2O 1273
Chhiti et al., 201344 28 H2O 1373−1673
Neoh et al., 198130 14 H2O 1777−1815
Xu et al., 200334 15 H2O 1770−1840
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We take x to be the vector of model parameters and y to be the vector
of experimental data values; f denotes a probability density function
(PDF). In words, Bayes’ law states that the probability of getting a set
of parameters given the data is proportional to the probability of
getting the data given a set of parameters times the probability of
getting the parameters. (The proportionality is used to imply that, as a
PDF, f should be normalized so that it integrates to one.) The term on
the left is called the posterior, and this is our objective. The value of x
where f X|Y is maximum is the mode and is the most probable set of
model parameters (which are elements of vector x) for the given data.
The term f Y |X(y|x) is called the likelihood, and f X(x) is called the
prior. The three terms are described in more detail below. Bayes’ law
can be thought of as an inverse probability law: we evaluate the desired
probability for x given y in terms of its inverse, the probability of y
given x, along with the prior probability f X(x).
2.5.1. Likelihood. The likelihood function. f Y |X(y|x) represents the

probability of the data y given a set of model parameters x. This is
evaluated as follows. Recall the data are a superset from multiple
experiments, each providing multiple observations. As such, an
individual data point is notated using two subscripts, yz,i, the first
indicating which experiment (z = 1, 2, ..., ne) and the second indicating
the sample data point within that experiment (i = 1, 2, ..., nz,i). A given
data point yz,i can be compared to the corresponding model value
μz,i(x) for a given set of model parameters x. We assume unbiased and
independent (but identically distributed) observations within a single
experiment and complete pairwise independence of observations
between any two experiments. This allows the likelihood to be written
as

∏ ∏ μ| = ||
= =

f p yy x x( ) ( ( ))Y X
z

n

i

n

z i z i
1 1

, ,

z ie ,

(14)

where p(yz,i|μz,i(x)) is the probability of an observation yz,i given the
corresponding modeled point μz,i(x) evaluated with a set of parameters
x. The modeled point μz,i(x) (a soot consumption rate) is evaluated
using one of eqs 3, 11, or 12. Each evaluation of μz,i(x) is performed
using the state properties (temperature, species partial pressure) that
correspond to the data point yz,i.
When experimental uncertainty has been quantified, one can

calculate the likelihood function in terms of the quantified uncertainty.
However, should experimental uncertainty not be defined (as is the
case here), we can evaluate the likelihood using a Gaussian form:
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Each Gaussian function is centered on the parameter μz,i(x). Hence,
the probability of the data given the model (the likelihood) is highest
when the data yz,i and the modeled data μz,i coincide. The use of the
Gaussian has introduced a new parameter, σz, which can be different
for each experiment. σz is a scale parameter for a given experiment, and
the set of σz is denoted by vector σ. These parameters are computed as
part of the solution, and as such, we augment the set of model
parameters x by including σ and denote this x*. That is, x* consists of
x and σ. All previous equations in this section 2.5 can have x replaced
with x* to reflect that σ are included in the set of parameters evaluated.
These extra parameters σ are commonly described as “nuisance
parameters”. These are internal parameters of the statistical analysis
that have been introduced to fully compute the likelihood.
2.5.2. Prior. The prior, f X*(x*), represents an initial degree of belief

for the x* parameter vector. The prior describes the probability of x*
before any of the currently analyzed data are considered. This function
may be a result of engineering intuition or previously collected and
analyzed data. Regardless, the prior represents any previous belief in
the nature of x* and may be overcome with a substantial amount of
data to the contrary.
In this study, a uniform prior is used for all model parameters, which

gives no preference to any tested values. Jeffrey’s prior is used for the
nuisance parameters, which gives preference to smaller values of the
nuisance parameter,47 all with prior independence.

∏
σ

* ∝*
=

f x( )
1

X
z

n

z1

e

(16)

This prior provides a basic uninformative model of our prior
ignorance, meaning that all tested parameter combinations initially
shared equal probability.

2.5.3. Posterior. As previously noted, the posterior, f X*|Y(x*|y), is
our desired result as it contains the PDF of the model (and nuisance)
parameters, which will provide us with the final calibrated parameters
as well as the credible intervals of the parameters. Like the prior, the
posterior is a function with np + ne dimensions, where np is the number
of model parameters for the given soot consumption model. The
posterior may be integrated over all parameters except a single desired
parameter to obtain the marginal PDF for that parameter. The mode
of this marginal PDF is then taken as the calibrated model parameter,
and the credible interval is related to the width of the marginal PDF, as
detailed below.

The posterior is computed by inserting the prior of eq 16 with the
likelihood of eqs 14 and 15 into eq 13 on the right-hand side to give:
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where the π1/ 2 factors have been subsumed into the proportionality
constant. To obtain the posterior for only the model parameters of
interest, one need only integrate over the nuisance parameters. By
identifying that each factor in this product is a function of only one
nuisance parameter, we recognized that an implementation will greatly
benefit by performing the integrals in a nested hierarchy. This
procedure is illustrated mathematically as
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In this way, the posterior of the parameters of interest can be
calculated in a numerical implementation that maintains a low
dimensionality. Specifically, the dimensionality at each stage of
calculation is the number of model parameters plus one (for the
single σz corresponding to the current experiment). Then one simply
cycles through the experiments. It should be noted that this procedure
should not be used at intermediate stages to obtain posteriors for the
nuisance parameters.

2.5.4. Implementation. In this study, Bayes’ law is used to
determine the probability of a set of parameters describing the
oxidation and gasification models based on the collected data. Here, an
example is detailed showing the steps taken to calibrate parameters in
the H2O portion of the gasification model found in eq 12. A
straightforward approach to solution of eq 18 is used. Each experiment
is considered sequentially as the multiplicative terms in eq 18 are
sequentially evaluated. As noted above, the effective dimensionality of
the system needed for evaluation is np + 1. We discretize the domain of
f X|Y(x|y) using a structured (np + 1)-dimensional grid stored as an (np
+ 1)-dimensional array.

1. The parameter values in each dimension were initially determined
over a very broad range within the physically possible space. This
range was refined to smaller ranges with multiple iterations of these
steps to where there was some detectable probability in order to better
detail the posterior presented in this work. The gasification by H2O, eq
12, contains np = 3 adjustable parameters: AH2O, n, and EH2O. The final
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ranges over which these and all other parameters were tested are
shown in Table 3.

2. The selected ranges are discretized into a series of potential
parameter values to be tested in different combinations; 150 points
were used for all parameters. Logarithmic spacing was used for all
parameters except ECO2

, EH2O, and n, which had linear spacing.
3. A prior needs to be established. In this study, a uniform prior was

used for the model parameters, meaning that all combinations of
model parameters had uniform probability. Jeffrey’s prior was used for
the σz values. The uniform prior for the model parameters was
subsumed in the posterior’s normalization constant and not explicitly
considered.
4. For the current experiment, at a given point in the (np + 1)-

dimensional grid (corresponding to a given value of x*) modeled rates
are computed for each experimental data point. A combination of
parameters is selected to be tested against every data point. From these
parameters and in computing the modeled rates, the secondary data
collected from literature (partial pressures and temperature) are used
that correspond to each experimental data point. For H2O gasification,
the modeled rates are computed using eq 12.
5. These modeled rates are compared to the rates given by the data

using eq 15 to calculate a likelihood that this combination of

parameters describes a data point. For a given grid point (a given value
of x*), the likelihood for all points in a given experiment is the product
of the likelihoods for the individual data points.

6. This likelihood value is multiplied by the Jeffrey’s prior for the σz
and the uniform prior (done implicitly) for the rate model parameters.
The product is a posterior value at the given grid point x* for the given
experiment.

7. The previous three steps are repeated for each point in the (np +
1)-dimensional grid. The result for H2O gasification is a four
dimensional array holding the (unnormalized) posterior PDF for the
given experiment, that is, one of the four dimensional product terms z
in eq 17.

8. This posterior is then marginalized to remove the σz dimension
by numerically integrating over all points that shared the same
Arrhenius pre-exponential factor, activation energy, and reaction order.
That is, by integrating along grid lines in the σz direction. This step is
portrayed mathematically in eq 18. The resultant three-dimensional
unnormalized PDF is the discretized posterior. This posterior can be
easily normalized to yield a true PDF so that its (numerical) integral is
one.45,46

9. Steps 4−8 are now repeated for the second (and subsequent)
experimental data sets. The final posterior, f X|Y(x|y), is then the
product of the posterior terms for the individual experiments (the
integral factors in eq 18). Equivalently, the posterior from step 8 for
the previous experiment can be used as the prior of the model
parameters for the current experiment since the likelihood is
multiplied by the prior in step 6. In this case, a final multiplication
of the posterior terms for the individual experiments is not needed
since the product is built up sequentially. This interpretation is
consistent with the Bayesian approach of making use of prior
information as it becomes available. The order in which the
experiments are processed does not affect the final posterior, nor
does it matter if all the data in the experiments are evaluated in one
step or several, as long as each data point is only evaluated once.

10. A final one-dimensional PDF for each individual parameter is
produced by marginalizing the multidimensional PDF to each
parameter. This is done similarly to the marginalization in step 8
above. For a given single parameter of interest (PoI), the (np − 1)-

Table 3. Range over Which Model Parameters Were Tested

equation parameter range

3 AO2
10−2 to 102

EO2
105 to 105.4

AOH 10−3.5 to 10−2

11 ACO2
10−18 to 10−15

ECO2
0 to 3× 104

12 AH2O 102 to 107.5

EH2O 105 to 5× 105

n 0 to 1

Figure 1. PDFs of each of the oxidation parameters in eq 3. Contours indicate joint PDFs.
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dimensional grid at each value of the discrete PoI is numerically
integrated, and the result is normalized so that the PDF integrates to
one. For H2O gasification, with EH2O as the PoI, we have the numerical
equivalent of

∬| = || |f E f A ny x y( ) ( ) d dE Y X YH O H OH2O 2 2 (19)

3. RESULTS
This section contains results of the Bayesian analysis as applied
to the aforementioned data sets. It is important to note that
these results are not to be considered absolute but, due to the
nature of Bayesian statistics, can and should be updated as more
experimental data become available. This is especially important
for soot gasification where few data are currently available in
the literature.
3.1. Oxidation Model. Results for the parameter

calibration of eq 3 can be seen in Figure 1. The three diagonal
figures are the resultant marginal PDFs of each of the adjustable
parameters. Each PDF is approximately log-normal in
appearance. It is interesting to note that the curve for AO2

is

much more broad than AOH: the marginal PDF of AO2
spans

over 2 full orders of magnitude, while that for AOH spans less
than 1 order of magnitude. This is due to the relative
importance of these two parameters and the influence of slight
variations on the overall rate. In the flame experiments,
oxidation by OH is the predominant mechanism of oxidation
and tends to influence overall rates more than oxidation by O2.
As a result, the flame experiments defined AOH, the OH
Arrhenius constant, more distinctly than AO2

. EO2
has a sharp

peak compared to either AO2
or AOH. This peak is due to the

TGA experiments, which were dominated by O2 oxidation.
Slight variations in EO2

had a stronger impact on overall rate

than AO2
, the O2 Arrhenius constant, variations and was

therefore more defined. The mode of each of the marginal
PDFs is reported in Table 4 as the calibrated parameters for eq

3; credible intervals are also shown. The value of AOH = 1.89 ×

10−3 kg K
Pa m s

1/2

2 corresponds to a collision efficiency of 0.15, which

is consistent with previous literature values (see ref 18 for a
discussion).
The off-diagonal plots of Figure 1 are contour plots showing

the relation between the three different parameters. The top of
these three plots shows a heavy correlation between AO2

and

EO2
. A correlation is to be expected because these two

parameters are used in combination to describe the oxidation
reaction as occurs by the O2 molecule. There is a positive
correlation between EO2

and AO2
, which is consistent with an

increase in AO2
being offset by an increase in EO2

for a given

rate. The shape of the correlation is consistent with the model
form. In contrast to the EO2

/AO2
PDF, the AOH/AO2

and AOH/

EO2
PDFs show little correlation between their respective

parameter pairs. The correlation that is present is slightly
negative so that increases in AO2

and EO2
result in decreases in

AOH. These low correlations are due to the nature of the
experiments from which data was derived. Oxidation in TGA
experiments was due entirely to the O2 mechanism, whereas
oxidation in flame experiments was dominated by the OH
mechanism.
Figure 2 shows the agreement between rate data collected

from the literature and the rates predicted by the calibrated

model for soot oxidation by O2 and OH. This figure displays a
parity plot of model calculated rates and literature reported
rates. The solid line indicates perfect agreement between the
model and the data, so the degree of scatter about this line is a
measure of the error in the model and scatter in the measured
data. The R2 statistic (coefficient of determination), using log10

Table 4. Calibrated Parameters for Soot Oxidation, Eq 3

90% credible interval

variable value lower bound upper bound units

AO2
7.98 × 10−1 1.94 × 10−1 5.15 kg K

Pa m s

1/2

2

EO2
1.77 × 105 1.57 × 105 1.94 × 105 J

mol

AOH 1.89 × 10−3 1.06 × 10−3 3.14 × 10−3 kg K

Pa m s

1/2

2

Figure 2. Comparison of predicted rates of soot oxidation by
calibrated, with parameters in Table 4, model and those rates collected
from the literature. Those experiments that measured only oxidation
by O2, such as TGA, are filled symbols (R2 = 0.75).

Figure 3. Comparison of oxidation rates as predicted by the NSC
oxidation model48 and those rates collected from the literature (R2 =
0.65).
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rates, is 0.75 for this comparison. As can be seen in the figure,
there is reasonable agreement between the data and the model
with deviations occurring in only a few data sets. For reference,
the data span 8 orders of magnitude.
For comparison, Figure 3 shows another parity plot between

the collected rates and the rates predicted by the Nagle/
Strickland-Constable (NSC) model.48 Here, R2 = 0.65. The
NSC model represents the oxidation of graphite by O2. As can
be seen in the figure, the NSC model tends to overpredict
oxidation of soot particles for TGA experiments and under-
predict oxidation for flame experiments where OH is
significant, indicating a significant difference between soot

and graphite surface chemistries. Another common model uses
a combination of the NSC O2 and Neoh OH oxidation models
(using a collision efficiency of 0.13, as found by Neoh et al.30).
Figure 4 shows the agreement between the collected data and
data predicted by this combined model. Here, R2 = 0.71. While
this combined model does better than the NSC model alone at
predicting soot oxidation, the calibrated model is slightly more
accurate (R2 value of 0.75 vs 0.71). The improvement is
modest, however, and indicates that the NSC/Neoh combined
model is nearly optimal over a wide range of reported oxidation
rates. This is an unexpected but important result.
While it is not the authors’ expectation that the proposed

model replace the well-established NSC/Neoh combined
model on the basis of our results, the use of Bayesian statistics
for calibration allows for the quantification of parameter
uncertainty as shown in Figure 1, which is not available for
parameters in the NSC/Neoh model. The similarity between
the NSC/Neoh and the calibrated oxidation models lends
confidence to our application of Bayesian statistics to the
calibration of the soot gasification models, for which there are
no strongly established models in the literature.

3.2. Gasification Model. 3.2.1. H2O Gasification. Results
for the parameter calibration of H2O gasification are presented
in Figure 5 and Table 5. As in the above discussion, this figure

Figure 4. Comparison of oxidation rates as predicted by the NSC
oxidation model combined with Neoh et al.30 calculated collision
efficiency for OH and those rates collected from the literature (R2 =
0.71).

Figure 5. PDFs of each of the H2O gasification parameters in eq 12.

Table 5. Calibrated Parameters for H2O Gasification of Soot,
Eq 12

90% credible interval

variable value lower bound upper bound Units

AH2O 6.27 × 104 8.31 × 103 2.47 × 107 kg K

Pa m sn

1/2

2

EH2O 2.95 × 105 2.66 × 105 3.26 × 105 J
mol

n 0.13 0.02 0.46
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contains the parameter marginal PDFs on the diagonal plots
and contour plots showing the relation between parameters on
the off-diagonal plots. Modes of the marginal PDFs are given in
Table 5. As expected, the marginal PDFs show fairly clear
distributions that could be characterized as approximately log-
normal (normal for n). The PDF for the reaction order was
only taken out to zero because a negative reaction order was
not considered in the form of this global model.
There exists an almost linear correlation between EH2O and

the log of AH2O, indicating a close linking between these two
parameters, as was noted for the oxidation reaction above.
However, there is a much different correlation between the
reaction order n and either EH2O or AH2O, with nearly round
contours until the reaction order n drops to low levels. This
shape of contour implies that the H2O reaction order is fairly
independent of the other two parameters, except at low values
of n, where there appears to be a positive correlation between n
and EH2O or AH2O. This indicates that the rates are mostly

governed by AH2O and EH2O, unless the reaction order is
sufficiently low (on the order of 0.5 or less), where the other
parameters must be adjusted to compensate. Figure 6 shows the

agreement between data collected from the literature and
calibrated model prediction using a parity plot like that shown
in the previous section. The rate data measured and predicted
span 10 orders of magnitude. The agreement between the
calibrated model and the data is relatively good, with most
predictions within an order of magnitude of the data. Note that
individual data sets show consistent bias with respect to the
model. For example, the model tends to consistently over-
predict the Chhiti data. Considering only a single data set
normally would allow better agreement than when considering
all sets together.
3.2.2. CO2 Gasification. Results for the parameter calibration

of CO2 gasification are shown in Figure 7. The two diagonal
plots are the marginal PDFs for the two adjustable parameters
in eq 11. The modes of these two PDFs are given in the Table
6. The PDF for the activation energy was cut off at zero, and
negative activation energies were not considered. The PDF
value at an ECO2

value of 0 implies that a straight ACO2
with no

exponential activation energy term,

=r A P TCO CO CO
0.5 2

2 2 2 (20)

could be used to describe the data, but not as well as the
current proposed model. The authors expect that more data
would support the form of this model and the activation energy
PDF would become more narrow within the positive range.
The full PDF of these parameters is shown in the contour plot
in Figure 7. As can be seen in this plot, ECO2

and the log of ACO2

are highly correlated in a linear relationship, as expected by the
model form.
Figure 8 shows the parity plot of the data and the calibrated

model for the CO2 gasification rates. A large amount of scatter
is seen in this plot and the model is much less accurate than for
the oxidation and H2O gasification rates. This discrepancy is
due to the combined effects of inconsistencies between
experiments and the inability of the model form chosen to
reproduce these data sets as accurately. The data in the four sets
span approximately 4 orders of magnitude. The model captures
the measured rates within an order of magnitude for most of
the data points.
Figure 9 shows the same parity plots as above, but here the

gasification model has been individually calibrated to each data
set instead of all the data sets combined. As can be seen in the
figure, the proposed model fits three of the four data sets, with
some difficulty in fitting the data measured by Kajitani et al.26

This indicates that the form of the model used was reasonable
but there may be differences between data sets that could be
explored more thoroughly.
Gasification rates tend to be much smaller than oxidation

rates, small enough that simple thermal pyrolysis of soot
samples may not be considered negligible in these experiments.
As a result, some of the experiments may appear to gasify faster
than others due to differences in pyrolysis. In addition, the

Figure 6. Comparison of predicted rates of soot gasification via H2O
by calibrated model, parameters in Table 5, and those rates collected
from the literature (R2 = 0.87 minus Neoh data).

Figure 7. PDFs of each of the CO2 gasification parameters in eq 11.

Table 6. Calibrated Parameters for CO2 Gasification of Soot,
Eq 11

90% credible interval

variable value lower bound upper bound units

ACO2
3.06 × 10−17 1.17 × 10−17 1.57 × 10−16

kg

Pa K m s1/2 2 2

ECO2
5.56 × 103 6.04 × 102 1.95 × 104 J

mol
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structure of the soot particle surface may have a much larger
impact on gasification than on oxidation. Two of these
experiments were carried out with the expressed purpose of
exploring changes in the rate as the surface chemistry changed
over time.16,26 The model used here does not account for such
changes. Despite these and other factors, the model form
chosen was the best of those tested. As more experimentation is
carried out and more data become available in the literature, a
more accurate model should be compiled and calibrated using
the techniques discussed in this study.
3.3. Rate Prediction. The above models can be used to

predict soot consumption rates along with a quantified
uncertainty for those predictions. This is illustrated in this
section using, for instance, the Higgins et al.36 data for soot
oxidation.
In Figure 10, a PDF of the rate in eq 3 is shown for a single

data point measured by Higgins where the flame has a

temperature of 1225 K and partial pressures of PO2
= 21 300 Pa

and POH = 6.22 × 10−7 Pa. This PDF is obtained from the full
joint PDF calculated for the oxidation parameters and displayed
in Figure 1. Each combination of parameters tested results in a
calculated rate; the associated probability with that combination
of parameters is equal to the probability of the calculated rate.
Just as with the marginal PDFs displayed in Figure 1, a
normalization constant is computed and used to determine the
final PDF of Figure 10.
The vertical line in the figure indicates the measured rate

reported by Higgins and falls near the center of the calculated
PDF. This PDF was calculated using discrete bins. The width of
the calculated PDF indicates the uncertainty in this calculation.
As more data are analyzed from the literature, this PDF will
narrow and the uncertainty will shrink.
Figure 11 shows the comparison of multiple data points

measured by Higgins compared to the model predicted rates.
There were two independent measurements taken out at each

Figure 8. Comparison of predicted rates of soot gasification via CO2
by calibrated model, parameters from Table 6, and those rates
collected from the literature (R2 = 0.62).

Figure 9. Comparison of predicted rates of soot gasification via CO2 by individually calibrated models and those rates collected from the literature.

Figure 10. PDF of the calculated gasification rate in Higgins
experiment where the flame data was at 1200 K.
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temperature by the experimenters, and all measurements are
shown in this plot. This figure also shows a 90% credible
interval evaluated from the calculated PDF at each point. Like
Figure 10, Figure 11 indicates that with the current analysis
there is a moderate degree of uncertainty in the oxidation
model, but all the reported rates lie close to the center of the
calculated uncertainty bounds.

4. DISCUSSION
The previous section demonstrated the use of Bayesian
statistics to calibrate global models for soot consumption.
This method of model calibration has a few advantages and
disadvantages over more traditional model calibration techni-
ques, such as minimization of summed square error.
The first clear advantage of using a Bayesian calibration

method, compared to that of a least-summed-squares, is the
production of a full PDF for the parameter-space from which
uncertainty quantification can be easily extracted. Other
methods of extracting uncertainty from calibrated parameters
assume a fixed PDF for the parameter space and test from that
distribution using either Student’s t test or an f-test.49

This full PDF comes at a cost. The computational cost of a
full Bayesian analysis scales by a power equal to the number of
parameters used in the models plus any nuisance parameters. In
the case of the soot consumption model calibrated in this study,
when the parameter space of the oxidation model was doubled
the number of computations required was increased 16-fold.
There are methods to reduce the computational costs of a
Bayesian analysis such as the use of Markov chain Monte Carlo
(MCMC) methods. MCMC methods are a class of algorithms
for sampling from the probability space based on the use of a
Markov chain that evolves a posterior distribution through
sampling until an equilibrium is obtained. These algorithms are
an intense field of research, and results have become very
robust and hold much promise for parameter calibration in
simple and complex models.50,51 Even with such improvements,
least-summed-squares usually requires only a fraction of the
computation cost. However, for the present study, computa-
tional costs did not limit the technique.
In principle, the final result of a least-summed-squares

calibration and a Bayesian calibration should yield the same
results.45 Both methods are based the use of the Gaussian
Distribution found in eq 15. Because σ is a nuisance parameter,

to maximize the probability of this distribution, the numerator
of the exponential should be minimized:

μ σ μ| = −p y yx xmax( ( ( ), )) min(( ( )) )z i z z z i z, ,
2

(21)

which is the basis of least-summed-squares.
In the case of Bayesian calibration, this distribution is used as

the likelihood function. Once the probability space is calculated,
the mode is used as the calibrated parameter set. In this study,
the modes of the marginal parameter PDFs were used instead
of the absolute mode of the probability space, but these tend to
be the same for simple, single-peaked topologies, as occur in
Figures 1, 5, and 7. If the probability surface topology is more
complex, for example, with multiple peaks of high probability,
the mode of the probability space will differ from the mode of
the parameter-marginal PDFs. This is an indication that there is
likely disagreement between data sets and the proposed model
and is clearly indicated by the Bayesian processes, in contrast to
a least-squared-sum analysis that would not necessarily reveal
this discrepancy.
The Bayesian analysis presented is a calibration technique for

parameters of a given model. This analysis is not strictly a
model optimization because the form of the model does not
change during the analysis, only the parameter values.52 In this
study, different forms of a soot consumption model were
analyzed including a collision-efficiency model, simple Ar-
rhenius equations, and modified Arrhenius equations, with
varied temperature and concentration dependencies.

5. CONCLUSIONS

Global models for soot particle oxidation and gasification were
presented with parameters calibrated using Bayesian methods.
Besides providing the model parameters, this method also gives
full joint parameter PDFs and uncertainties, which provide
more detailed information, with fewer assumptions, than are
available by other methods such as by minimizing least sum
square errors. PDFs of the calibration were presented along
with parity plots displaying agreement between model
predicted rates and those collected from the literature. The
oxidation model shows good results and was robust enough for
use in large scale simulation. The gasification model showed
reasonable results for H2O gasification, but only marginal
results for CO2 gasification when considering all data sets.
Individual data sets could be fit with much more accuracy. The
R2 values for the oxidation and H2O and CO2 gasification
models are 0.75, 0.87, and 0.62, respectively. As new data
become available, these could easily be incorporated into the
model to reduce uncertainty in the calibrated model
parameters. This is especially true for the performance of the
CO2 gasification. Further research into model forms including
additional soot physics could reduce possible model bias and
possibly improve consistency among experiments. While the
oxidation model was an improvement over the NSC O2 +
Neoh OH combined oxidation model R2 = 0.71, the
improvement is modest.
The calibrated oxidation model can be used to calculate rates

along with their uncertainties. An example was given using the
Higgins et al.36 experiments. Results were compared to the
data, and it was found that all reported data fell within
determined credible intervals of the model.

Figure 11. Comparison of the model predicted oxidation rate with
confidence bounds versus the measured rate in Higgins’s experiment.
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■ NOMENCLATURE
ACO2

= Arrhenius pre-exponential factor for CO2 gasification,
kg

Pa K m s1/2 2 2 , eqs 11, 20

AH2O = Arrhenius pre-exponential factor for H2O gasification,
kg K

Pa m sn

1/2

2 , eq 12

AO2
= Arrhenius pre-exponential factor for O2 oxidation,

kg K
Pa m s

1/2

2 , eq 3

AOH = Arrhenius pre-exponential factor for OH oxidation,
kg K
Pa m s

1/2

2 , eq 3

Ci = molar concentration of species i, mol
m3 , eq 4

d1 = initial particle diameter, m, eqs 5, 7
d2 = particle diameter after oxidation, m, eq 5
Ei = activation energy for species i consumption, J

mol
, eqs 3,

11, 12
k = Arrhenius rate constant, 1

s
, eq 6

mcr,i = mass of carbon removed from soot surface, kg
mol

, eq 4

n = species reaction order in the rate equation, unitless, eqs
6, 12
ne = number of experiments, unitless, eqs 14, 16, 18
np = number of parameters for a given soot model, unitless
nz,i = number of data points in experiment z, unitless, eqs 14,
17
XO2

= mole fraction of O2 in the gas phase, unitless, eq 6
Pi = partial pressure of species i, Pa, eq 3, 11, 12

R = ideal gas constant, J
mol K

, eqs 3, 11, 12, 20

rCO2
= gasification rate due to CO2,

kg
m s2 , eq 10, 11, 20

rgs = gasification rate, kg
m s2 , eq 10

rH2O = gasification rate due to H2O,
kg

m s2 , eqs 10, 12

rox = oxidation rate, kg
m s2 , eqs 3, 4, 5, 7

roxrep = reported oxidation rate, s−1, eq 7
T = local temperature, K, eqs 3, 11, 12, 20
t = residence time, s, eq 5
v ̅ = Boltzmann equilibrium mean molecular velocity, m

s
, eq 4

x = vector of model parameters, various units, eqs 14, 15, 17,
18, 21
x* = vector of all parameters (with nuisance parameters),
various units, eqs 13, 14, 16, 17, 18

y = vector of experimental data, kg
m s2 , eqs 13, 14, 17, 18

yz,i = single experimental data point, kg
m s2 , eqs 14, 15, 17, 18,

21
ηi = Species collision efficiency, unitless, eq 4

μz = model prediction, kg
m s2 , eqs 14, 15, 17, 18, 21

ρs = soot density, kg
m3 , eqs 5, 7

σ = vector of standard deviations, kg
m s2

σz = standard deviation (nuisance parameter), kg
m s2 , eqs 14,

15, 16, 17, 18, 21
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