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Introduction

error

* Simulations of oxy-coal boilers

e Carbon-Capture Multidisciplinary Simulation
Center

* Model uncertainty reduced and characterized
through experimental validation and

verification/uncertainty quantification
(V&V/UQ)

* Vary, compare, and contrast experiment and
analysis techniques to capture uncertainty and
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Deposits

* Highly variable

* Emissivity
* Previous study with room
temperature FTIR

* Thermal Conductivity

k
0a=_
PCp
* k= paC,

* Temperature dependence
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Experimental Design

* Industrial Combustion And
Gasification Research Facility

* L-1500 Multifuel Furnace
e 1.1m by 1.1m internal cross-section
 13.1min length

* February 2015 oxy-coal campaign

e Utah Sufco coal

* Firing rate ~1.0 MW (3.5 MBtu/hr)
Coal feed rate: ~135 kg/hr (297 Ib/hr)
* Avg. excess oxygen ~3%
Exhaust CO2 ~86-88%

Surface temperature (ceiling): ~1052
"C (1925 °F)
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Experimental Design

e ~400 total sampling sights throughout the
Right Wall Ceiling | furnaceina 1 ftx 1 ft grid
- » Surfaces: left wall, ceiling, & right wall

Left Wall

Burner
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Experimental Design
e ~400 total sampling sights throughout the

Ceiling furnaceina 1 ftx 1 ft grid

>3 » Surfaces: left wall, ceiling, & right wall
Twelve sampling sights chosen for a
preliminary study

Right Wall

tﬁf{\}\ = * Location: midline of each surface
SR R e < T * Depth: 1, 2, 3, and 4 feet from burner

on each surface
* Highly radiative section of the

furnace

Left Wall Ceiling Right Wall

. = sampling location / / /

I =flame / /
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Samples

Depth from Burner Along Surface Midline [ft]
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Right Wall

. B =samples /
Porosity / / /
. =flame / /
* Porosity Left Ceiling --e---Right
v
. ¢ — pores x100% 0.35
Vsolid"'Vpores 03
* Total pore volume |
* BET analysis 0.25 B
* Total solid volume .
> \
* Pycnometry =
© 0.15 e \
* Very low for all three surfaces S
* Porosity does not appear to be a strong 0.1 A
function of depth for the first four feet of 005 "
the furnace :
* Slightly higher in the left and right walls 0
than in the ceiling 1 2 3 4

Depth from Burner [ft]
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Porosity

* Porosity

. p=—LUE__%100%

Vsolid"'Vpores

e Total pore volume
e BET analysis

e Total solid volume
* Pychometry

* Very low for all three surfaces

* Porosity does not appear to be a strong
function of depth for the first four feet of
the furnace

* Slightly higher in the left and right walls
than in the ceiling

* Ceiling deposits molten during operation
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Thermal Conductivity - Method

* Measurements of a, p, and C, for deposit samples
* Higher temperature regimes when available (a, C))

keff = Pmeas%meas Cpmeas
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Thermal Conductivity - Method

* Measurements of a, p, and C, for deposit samples
* Higher temperature regimes when available (a, C))

keff = Pmeas®measCPmeas
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Thermal Conductivity - Method

* Measurements of a, p, and C, for deposit samples
* Higher temperature regimes when available (a, C))

keff = Pmeas®measCPmeas

|

Differential Scanning Calorimetry
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Thermal Conductivity - Method

* Measurements of a, p, and C, for deposit samples
* Higher temperature regimes when available (a, C))

keff = Pmeas®measCPmeas

|

Differential Scanning Calorimetry
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Solid Density

Calibrated Sample Valve

Cell Volume -
Veew X

Vsamp

Calibrated Expansion
Volume

VEXP

* Pycnometry

Vexp
¢ Vsamp = Veen — Pig
Pyg
. _m
pP=

* Direct measurement of true (skeletal) density of samples

* Three replicates to capture instrument run error

e 2 xStd. Dev.
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Solid Density

Calibrated Sample Valve Calibrated Expansion
Cell Volume E \ Volume
VCELL VEXP
Vsawp

* Pycnometry

Vexp
¢ Vsamp = Veen — Pig
Pyg
. _m
pP=

* Direct measurement of true (skeletal) density of samples

* Three replicates to capture instrument run error
e 2 xStd. Dev.

* Density does not appear to be a strong function of depth for
the first four feet of the furnace
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Thermal Diffusivity i D N g

= flame / /
* Thermal diffusivity determined in previous work using novel Left Ceiling Right
technique 20
» Surfaces covered in deposit were heated using an oxy- —_
acetylene torch X 35
* Infrared camera video was taken of the heated area § 30
* Diminishing area of the heat was tracked with MATLAB using S
a threshold value X 25
* Two-dimensional radius used to approximate hemispherical E 20 ]
volume of dissipating heat 2
* The slope of the heat volume versus time was comparedtoa & o i
COMSOL simulation of pure refractory and related to yield = 10 1
the thermal diffusivity. £ |
e Three replicates to capture measurement error § > l
* 1 xStd. Dev. 0
* Thermal diffusivity does not appear to be a function of depth 1 2 3 4

for the first four feet of the furnace Depth from Burner [ft]
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Heat Capacity

* Differential scanning calorimetry

* Direct measurement of heat
flow

* Heat capacity calculated
1 (8Q/dv)
P m(dT/d7)
* Data at 700 °C for ceiling sample
at 1 ft depth — two runs

* Low enough temperature to avoid
molten state and glass transition

* High standard deviation

Heat Capacity
[J/kg*K]

Run 1 1404
Run 2 1884
Average 1644
Std. Dew. 340
2 x Std. Dev. 680

i CARBON CAPTURI

4-( i )—b MULTIDISCIPLINARY
SIMULATION CENTER

¢



Thermal Conductivity - Result

keff — pmeasameascp,meas

*Approximated using C,, measurement from
sample for ceiling at 1 f depth for a
temperature of 700 °C

Thermal conductivity does not appear to be a
strong function of distance in the first four
feet of the furnace

High thermal conductivity may be due to
potential sintering of samples — indicated by
very low porosity

Uncertainty in thermal diffusivity
measurements from new technique may
contribute to high thermal conductivities
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Thermal Conductivity - Result

e *Approximated using C,, measurement from
sample for ceiling at 1 f depth for a
temperature of 700 °C

* Thermal conductivity does not appear to be a
strong function of distance in the first four
feet of the furnace

* High thermal conductivity may be due to
potential sintering of samples — indicated by
very low porosity
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* Uncertainty in thermal diffusivity
measurements from new technique may

Thermal Conductivity [W/m*K]

contribute to high thermal conductivities 2 ‘
* Using a smaller literature value for a of 4.5 x 10”7 0
[m?/s] gives korp = 2.01 [W/m * K] for the 1 2 3

ceiling at 1 ft depth Depth [ft]




Flash Method Validation

* Flash Measurement Technique

 Measurements up to 2000 °C for
validation of the presented
approach to calculating effective
thermal conductivity

* Direct measurement of sample
thermal diffusivity

* Also produces heat capacity and
thermal conductivity information

Figure and plot: http://www.tainstruments.com/wp-content/uploads/BROCH-ThermalConductivityDiffusivity-2014-EN-2.pdf
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Summary

Conclusions

e Results for first four feet of L-1500 furnace

* Low overall porosity
* Samples may have sintered during furnace operation
Density does not strongly depend on depth
* Low uncertainty in measurements due to low error
* Thermal diffusivity does not seem to depend on depth
* High uncertainty in measurements due to large error
* Thermal conductivity is high for the oxy-coal deposits
* May be due to potential sintering of samples

* High uncertainty of thermal diffusivities from new
technique

* Thermal conductivity does not strongly depend on
depth

* High uncertainty in calculation due to approximation
uﬁ_mg_only one sample heat capacity measurement at
this time

* Overall, high temperature effective thermal
conductivity has potential to be approximated by
combining various property measurements

* Will require further refinement in future work

Future Work

* Larger sample size
* Farther from burner
* Increase spread on surfaces
* Up to 400 samples available

* High temperature density measurements

» Validation/verification of thermal diffusivity
* Flash method
* Refine technique to account for refractory contribution

* More detailed analysis of heat capacity
* Higher temperatures with glass transition

* X-ray fluorescence and SEM to determine
composition and structure

* High temperature FTIR

* Development of instrument models for the various
measurement techniques to fully characterize
sources of uncertainty

1
T




Instrument Figure References

Pycnometer figure (slides 17-20): http://www.micromeritics.com/Product-Showcase/AccuPyc-II-
1340.aspx

IR camera figure (slides 18-20): http://www.flir.com/science/display/?id=44791
TGA-DSC figure (slides 19-20): http://www.tainstruments.com/wp-content/uploads/sdt.pdf




Thank you.
Questions?
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Other Institute Presentations

 Wednesday, June 8th
e 70. “Heat Transfer and Temperature Behavior of a Maximum O2 Concentration Oxy-Coal Flame”
e 11:50 am — Oxyfuel Technologies |
* 67. “Pilot-Scale Investigation and Modeling of Heat Flux and Radiation from an Oxy-coal Flame”
* 4:00 pm — Oxyfuel Technologies Il

e 52. “Thermal Characterization of a 1.5 MW Pulverized-coal Furnace Using Infrared Heat Flux, Total
Heat Flux and Measured Heat Loss”

* 4:40 pm — Oxyfuel Technologies Il

* Thursday, June 9th
e 76. “Simulation and Validation of 15 Mwth Oxy-Coal Power Boiler”
e 10:30 am — Oxyfuel Technologies
e 78. “Uncertainty Quantification for Coarse-Grained Modeling of Coal Devolatilization”
 11:10 am — Oxyfuel Technologies I
* 79. “Towards Next Generation Simulations of Full-Scale Coal-Fired Boilers”
e 11:30 am — Oxyfuel Technologies I
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Extra Plots - Density
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Extra Plots — Thermal Diff M -smpingiocation I = fiame
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Emissivity

Diffuse reflectance cell in FT/IR to measure complex refractive index, n) and k;,
of the deposits at room temperature

Spectral reflectivity:
. _ (m—D2+k3
Pr = (na+1)2+k2
Kirchhoff’s law (&)= ) and radiation balance:
cgtpt+tn=1
Assuming opaque medium:
ca=1-p
» Total emissivity approximated:

25 um
. o . J25umrEpa
&€= 25 um E
2.5 um “bA
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Emissivity

Left Wall Ceiling Right Wall
%
7 7 7

Left Wall Emissivity Ceiling Emissivity 1 Right Wall Emissivity

1
(]
{0 1\ g,jzﬁzgie X o 8
' v 80
> )d‘b" 5‘6" \H:ﬁ‘ M - -
20.9510 o § ) oy e g 20.95 20.95
= 0 ° 1 e = =
[7)] o ‘ e (7)) 7))
0 2] ' R
£ £ il £ &
“ 0.9} -e-H=10"]; 0.9t 44 & -e-H=10"; “oop ~e-H=10"
- & - H=20" é - o~ H=20" ? - & - H=20"
- & - H=30" - & - H=30" i - & - H=30"
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 i
Depth into Reactor (ft) Depth into Reactor (ft) Depth into Reactor (ft) Y., .
SIMULATION CENTER

¢

Courtesy Teri Draper



