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Uniform sampling

Goal: uniform sampling of feasible set

* Sampling is useful in providing information about _F

 B2BDC makes NO distribution assumptions, but as far as taking
samples, uniform distribution of _F is reasonable

* Applying Bayesian analysis with specific prior assumptions also
leads to uniform distribution of _F as posterior!ll
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Rejection sampling method with a box

Procedure:
* find a bounding box

: L . Circumscribed box
» generate uniformly distributed samples in %

the box as candidates

* reject the points outside of feasible set

Pros & Cons

e provably uniform in the feasible set

7

Feasible set

e candidates can be drawn very efficiently

« efficiency drops quickly with increased dimension
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Random walk[?l (RW)

Procedure:
. . Feasible set
 start from a feasible point l

* select a random direction, calculate extreme
points and choose the next point uniformly

* repeat the process direction

Pros & Cons

* NOT limited by problem dimensions

* NOT necessarily uniform in the feasible set
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Rejection sampling method with a polytope

Procedure:
* find a convex bounding polytope
. ibed Feasible set
» generate candidate points by random walk Ireumseribe 5
polytope \ /

* reject the points outside of feasible set

Pros & Cons

e provably uniform in the feasible set ‘

* increased efficiency with more polytope facets

* limited by computational resource
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Effect of polytope complexity
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* Polytopes with
different
complexity are
tested

/ * 5 million
— candidates are
iy generated to
n=s calculate the
n=7 efficiency and
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Effect of polytope complexity
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Truncation strategy

Motivations
 difference between a bounding and circumscribed polytope

» existence of low-density tails along most of the directions

Procedure

 start with a bounding polytope and shrink the polytope bounds
* recommended to stop when a practical efficiency is obtained

Original, computable Smaller, incomputable

bounding polytope bounding polytope Polytope with

truncation

Feasible set
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Effect of truncation
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Effect of truncation

Sampling efficiency
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Check of directional histograms

0.15

Due to the
lconservative
estimation in b; os

01F
Low-density tails

0.05

* This is observed along all the directions defining the polytope
* The distribution has zero-density regions
* The distribution has low-density tail regions
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Principal component analysis (PCA)

Procedure: Feasible set

* collect RW samples from the feasible set l

e conduct PCA on RW samples o1
* find a subspace based on PCA result

e generate uniform samples in the subspace

Pros & Cons
01
* improves sampling efficiency significantly 02
o1 >> 02
* works only if feasible set approximates a

lower-dimensional manifold/subspace
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Effect of dimension reduction
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Principal direction index
 efficiency is affected mostly by problem dimension the (2.96e-5 in full dimension)
* returned samples approximate the desired distribution with acceptable accuracy

only when the smallest principal direction is truncated
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 We developed methods to generate uniformly distributed
samples of a feasible set

* Truncation strategy and PCA further improves the sampling
efficiency of the method

 Numerical results support an advantageous efficiency-
accuracy trade-off of the proposed approximation techniques
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