

Acknowledgements

This work is supported as a part of the CCMSC at the University of Utah, funded through PSAAP by the National Nuclear Security Administration, under Award Number DE-NA0002375.

Bound-to-Bound Data Collaboration (B2BDC)

Model:
$$M_e(x), e = 1, 2, ..., n$$

Feasible set

 $\{x \in \mathcal{H} : L_e \le M_e(x) \le U_e, \ e = 1, 2, \dots, n\}$

Uniform sampling

Goal: uniform sampling of feasible set

- Sampling is useful in providing information about \mathcal{F}
- B2BDC makes **NO** distribution assumptions, but as far as taking samples, uniform distribution of \mathcal{F} is reasonable
- Applying Bayesian analysis with specific prior assumptions also leads to uniform distribution of \mathcal{F} as posterior^[1]

Rejection sampling method with a box

Procedure:

- find a bounding box
 - available from B2BDC
- generate uniformly distributed samples in the box as candidates
- reject the points outside of feasible set

Pros & Cons

- provably uniform in the feasible set
- candidates can be drawn very efficiently
- efficiency drops quickly with increased dimension

Random walk^[2] (RW)

Procedure:

- start from a feasible point
 - available from B2BDC
- select a random direction, calculate extreme points and choose the next point uniformly
- repeat the process

Pros & Cons

- NOT limited by problem dimensions
- NOT necessarily uniform in the feasible set

Rejection sampling method with a polytope

Procedure:

- find a convex bounding polytope
 available from B2BDC
- generate candidate points by random walk
- reject the points outside of feasible set

Pros & Cons

- provably uniform in the feasible set
- increased efficiency with more polytope facets
- limited by computational resource

Effect of polytope complexity

- Polytopes with different complexity are tested
- 5 million candidates are generated to calculate the efficiency and CPU time

Effect of polytope complexity

- Sampling
 efficiency
 increases with
 more complex
 polytope
- The improvement is more significant at higher dimensions

Truncation strategy

Motivations

- difference between a bounding and circumscribed polytope
- existence of low-density tails along most of the directions

Procedure

- start with a bounding polytope and shrink the polytope bounds
- recommended to stop when a practical efficiency is obtained

Effect of truncation

A polytope is defined as:

$$a_i^T(x-x_0) \le b_i$$

 $i = 1, 2, \dots, n$

- The $b_{i,0}$ s are calculated from B2BDC and represents a bounding polytope
- b_i s vary gradually to generate smaller polytopes

Effect of truncation

Check of directional histograms

- This is observed along all the directions defining the polytope
- The distribution has zero-density regions
- The distribution has low-density tail regions

Principal component analysis (PCA)

Procedure:

- collect RW samples from the feasible set
- conduct PCA on RW samples
- find a subspace based on PCA result
- generate uniform samples in the subspace

Pros & Cons

- improves sampling efficiency significantly
- works only if feasible set approximates a lower-dimensional manifold/subspace

Effect of dimension reduction

- efficiency is affected mostly by problem dimension the (2.96e-5 in full dimension)
- returned samples approximate the desired distribution with acceptable accuracy only when the smallest principal direction is truncated

Summary

- We developed methods to generate uniformly distributed samples of a feasible set
- Truncation strategy and PCA further improves the sampling efficiency of the method
- Numerical results support an advantageous efficiencyaccuracy trade-off of the proposed approximation techniques

Reference

- [1] Frenklach, Michael, et al. "Comparison of statistical and deterministic frameworks of uncertainty quantification." SIAM/ASA Journal on Uncertainty Quantification 4.1 (2016): 875-901.
- [2] Smith, Robert L. "Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions." Operations Research 32.6 (1984): 1296-1308.
- [3] Gretton, Arthur, et al. "A kernel two-sample test." Journal of Machine Learning Research 13.Mar (2012): 723-773.