
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Progress with Nebo: A portable, performant EDSL for multiphysics
applications

SIDDARTHARAVICHANDRAN,MICHAELBROWN, BABAKGOSHAYESHI, and JAMES SUTHER-

LAND, University of Utah

Nebo is a declarative language specific to the domain of numerical solution of partial differential equations on structured grids. Nebo
supports three modes of execution across CPU and GPU back-ends for sequential and parallel execution. The syntax is consistent
across the various modes of execution making the task of writing applications on top of Nebo easy. Nebo is embedded in C++ and uses
template meta-programming extensively to move much of the complexity to compile time, thus making it performant at run time. In
this paper, we present extensions made to Nebo to support particle transport including smoothed particle hydrodynamics as well as
integration with the Kokkos library. We also discuss performance of Nebo on CPU and GPU platforms.

Additional Key Words and Phrases: Domain Specific Language, C++, GPU, PDE

ACM Reference format:
Siddartha Ravichandran, Michael Brown, Babak Goshayeshi, and James Sutherland. 2017. Progress with Nebo: A portable, performant
EDSL for multiphysics applications. 1, 1, Article 1 (November 2017), 10 pages.
https://doi.org/

1 INTRODUCTION

Techniques for writing high performance software that exploit increasingly diverse hardward - from multicore CPUs to
GPUs - evolve more slowly than hardware. And more often than not such code is written at a very low level, which
can be labor intensive and error-prone for domain scientists. With that in mind and specific to the domain of solution
of PDEs on structured grids, Nebo aims at improving productivity for application programmers/domain experts by
exposing interfaces that are scalable, consistent and portable across multiple architectures, without compromising on
efficiency and performance. Nebo was designed specifically to isolate software developers from hardware details. Nebo
is in essence a declarative domain-specific language (DSL) embedded in C++ [Earl et al. 2017].

Nebo was designed for use in high-performance simulation projects such as Wasatch [Saad and Sutherland 2016],
which is a component within the Uintah [Berzins et al. 2012; Parker 2002] framework and has demonstrated scalability
to 262,000 cores. Wasatch provides a flexible toolkit for solving convection-diffusion-reaction problems, and focuses on
turbulent reacting flow simulations using large eddy simulation.

Nebo has a restrictive declarative syntax, represented as an abstract syntax tree (AST) by leveraging the C++ template
system. There are currently three modes of execution: sequential (single-threaded), parallel-CPU (multi-threaded) and
parallel-GPU. Nebo generates efficient code based on the intended backend/mode of execution for a given computation.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Ravichandran et al

Memory management and data transfers between devices is left to either the framework or the end user, although
Nebo has tools for allowing the user to migrate data between CPU and GPU. By providing a restricted syntax, Nebo is
intentionally limited in its capability for its domain. It is intended to be used as a toolkit to enable high-performance
simulation of PDEs (or parametric ODEs) on structured grids. The sequential mode of execution performs at least as
well as the hand-written code it replaces. However, the parallel modes scale well on both multicore CPU and GPU
platforms [Earl et al. 2017].

In the following sections, we cover a brief overview of what Nebo already provides followed by the extensions made to
it since the description provided by [Earl et al. 2017]. Specifically, Nebo has introduced particle-cell interpolation to solve
conservation equations thereby enabling hybrid computing in multiphysics simulations. We have also implemented
kernels to facilitate smoothed particle hydrodynamics (SPH) simulations via a mapped reduction operation. Finally,
we have explored means to improve performance by switching to a Kokkos [Edwards et al. 2014] backend to target
multiple architectures.

2 CONSTRUCTS

Before discussing new features in Nebo, we briefly review the key constructs that Nebo provides, with further details
available in [Earl et al. 2017].

2.1 Spatial Fields

Computations performed using Nebo essentially work on meshes, stored as an array of data. A SpatialField is a
construct is used to represent a field on a mesh in up to three dimensions. There are numerous types of fields supported
representing the physical location of the field on the mesh: cell volume centers as well as x , y and z faces. In addition,
Nebo supports staggered meshes which are commonly used in finite-volume computational fluid dynamics simulations.
Particle field types are also supported, for nearly 20 distinct field types in Nebo.

To create a field, we specify its memory window, boundary cell information, ghost cell information and optionally
the device on which the field’s memory would be allocated. There are provisions to expand a field to multiple devices
but at a given time a field can be active on only a single device. A field on multiple devices, can only be written to on
the active device and its memory on all other devices requires re-validation once the write is complete. Similarly a field
values can be read from a particular device if it is valid on that particular device. This is controlled by the valid flag for
each device the field exists on.

A memory window, as the name suggests, is a window into the memory of a particular field. It contains information
(extents and offsets) needed to arrive at the flat index of the field’s first value. And also information needed to determine
the flat index of a particular field value while iterating over up to three dimensions of the field. This allows Nebo
operations to be performed over subsets of the field if needed.

Nebo naturally supports the concept of ghost cells to enable distributed computing where the global field is partitioned
onto processes and ghost regions are populated with neighbor process values to facilitate stencil operations. Nebo
allows for fields to have an arbitrary number of ghost cells on each of the six faces of the field.

2.2 Spatial Masks

A SpatialField, as described above, represents a continuous space in up to three dimensions. Nebo also provides
the notion of a SpatialMask, which defines a set of points and can be used in conjunction with Nebo operations to
Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Progress with Nebo: A portable, performant EDSL for multiphysics applications 3

perform calculations only on the mask (see §3.3). This is particularly useful in imposing boundary conditions, where a
mask may be created for each boundary to facilitate operations germane to that boundary.

3 TRADITIONAL NEBO OPERATIONS

3.1 Mathematical Operators

Expressions written in Nebo include the following: algebraic operators (addition [•+•], subtraction [•−•], multiplication [•∗
•], division [•/•], and negation [−•]); trigonometric functions (sine [sin(•)], cosine [cos(•)], tangent [tan(•)], and hyperbolic
tangent [tanh(•)]); extremum functions (minimum [min(•, •)] and maximum [max(•, •)]), and other mathematical functions
(exponentiation with base e [exp(•)], exponentiation with given base [pow(•, •)], absolute value [abs(•)], square root
[sqrt(•)], and natural logarithm [log(•)]). Nebo provides support for these operators and functions through operator
(and function) overloading and template meta-programming, and the set of supported functions is easily extensible.
These operators can be arbitrarily nested with other Nebo constructs including assignments (§3.2), conditionals (§3.3),
reductions (§3.4) and stencils (§3.5).

3.2 Assignment

Assignments allow for a field to be written into using the assignment operator[• <<= •]. As expected the LHS would be
a field and the RHS would be an expression which would produce a value for each point in the LHS. These expressions
could include mathematical operators seen above, conditional expressions (§3.3), stencil operations (§3.5) and mapped
reductions (§3.4).

F i e l d a , b , c , f ;
/ / . . .

f <<= a + b ∗ c ;

The above snippet of code writes into f across its extents using the values of fields a, b and c . For every point p
across the extents of f , fp = ap + bp ∗ cp .

3.3 Conditional

As Nebo operates on a field pointwise over three dimensions, there needs to be someway to operate conditionally at a
particular (x,y,z) based on the value of the field at that point. The cond operator allows one to write such code.

F i e l d a , b , f ;
/ / p o p u l a t e a , b . . .

f <<= cond (a > 0 , 1 . 0)
(a) ;

The above snippet of code writes into f across its extents using the values of fields a and b. For every point p across
the extents of f , if ap (the value of a at p) is greater than 0 then fp = 1.0 else fp = ap .

Nebo supports the following boolean operations on fields to form valid expressions to be used within cond: using
any of the C++ numeric comparison operators (• == •, •! = •, • < •, • > •, • <= •, and • >= •); or a logical connective of
Nebo boolean expressions, using any of the C++ logical connective operators (•&&•, •| |•, and !•).

As mentioned in §2.2, we can use masks in conjunction with the cond operator:

F i e l d a , b , c , f ;
/ / p o p u l a t e a , b , c . . .

Mask m;

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Ravichandran et al

/ / d e f i n e mask p o i n t s . . .

f <<= cond (a < b , −1 . 0) / / i f a [i] < b [i] , f [i] = −1

(m, c) / / e l s e i f m[i] i s a masked po i n t , f [i] = c [i]

(2 . 0) ; / / e l s e f [i] = 2 . 0

The above snippet of code writes into f across its extents using the values of fields a. For every point i across the
extents of f , if ai (the value of a at p) is less than bi then fi = −1.0 else if point i is a mask point, then fi = ci , otherwise
fi = 2.0. Each of the fields in the cond statement above could themselves be Nebo expressions, inlined within the call
to cond.

3.4 Reduction

These operations enable reducing the values of a field into a singular value. For instance, finding sum of all the values
of a field:

F i e l d a , b ;
/ / p o p u l a t e a , b . . .

const double s = nebo_sum (a + tanh (b)) ;

In the above snippet, for every point i across the extents of a and b, s =
∑
p ai + tanh(bi). Nebo currently supports

reductions for min, max, sum and L2 norm.

3.5 Stencils

While solving PDEs, stencil operations are used for interpolation and discrete calculus operations [Earl et al. 2017].
Nebo’s support for stencils is extensible, and it presently supports nearly 200 distinct stencil operators to perform
gradient, divergence and interpolation operations between different types of SpatialFields.

Fig. 1. Example of stencils involved in the finite-volume

construction of ∂
∂x

(
λ ∂T

∂x

)
.

For instance, to solve the heat equation along a one-dimensional
pipe, we would need to solve ∂T

∂t =
1

ρcp
∂
∂x

(
λ ∂T
∂x

)
. The term

∂
∂x

(
λ ∂T
∂x

)
is computed using stencils as shown in the code snippet

below and depicted in Figure 1.

typedef BasicOpTypes < SVo l F i e l d > : : DivX DivX ;
typedef BasicOpTypes < SVo l F i e l d > : : GradX GradX ;
typedef BasicOpTypes < SVo l F i e l d > : : In terpC2FX In t e rpX ;
/ / . . r e t r i e v e o p e r a t o r s

SVo l F i e l d divq , T , lambda ;
S S u r fXF i e l d q ;
/ / s e t T , lambda . . .

q <<= in t e rpX (lambda) + gradX (T) ;
d ivq <<= divX (q) ;

However, this could be combined as:

d ivq <<= divX (i n t e rpX (lambda) + gradX (T)) ;

which would eliminate a temporary field and result in one, rather than two kernel calls.

4 AST CREATION

The abstract syntax tree created by Nebo leverages on the meta-template system provided by C++. As seen above, using
Nebo one can write a wide variety of expressions to run field assignments, reductions, etc.. These expressions form a
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Progress with Nebo: A portable, performant EDSL for multiphysics applications 5

templated object in Nebo termed as a NeboExpression. For instance, the RHS of an assignment operation results in an
NeboExpression, one which is evaluated for every point across the extents of the LHS.

F i e l d out , a , b , c ;
/ / p o p u l a t e a , b , c . . .

out <<= a + b ∗ c ;

This simple assignment operation results in the creation of the AST in terms of a NeboExpression as shown in Figure
2, and is encoded in the type type system as:

NeboExpress ion < SumOp<NeboCons tF ie ld , ProdOp<NeboConstF ie ld , NeboCons tF ie ld > >

Fig. 2. Abstract syntax tree for out <<= a+b*c.

A NeboConstField is a wrapper for a SpatialField cou-
pled with the execution mode, constructed internally when the
NeboExpression is created. Similar objects are created for scalars,
single valued fields (fields that essentially store a single value across
all its points) and mappers (see §6.2).

In the above example, the NeboExpressions are created by over-
loading operators [• + •] and [• ∗ •]. By using templates, Nebo can
restrict the types of operands a particular operation can take. For example, if we were to run a mapped reduction we
can restrict the second parameter to be a mapper and passing in an expression for the second argument will result in a
compile error in that case.

5 EXECUTION MODES/BACKENDS

Nebo supports three execution modes at runtime:

• Sequential (single threaded CPU) - SeqWalk
• Parallel CPU(multi threaded on the CPU) - Resize
• Parallel GPU(multi-threaded on the GPU) - GPUWalk

As discussed in §4, all computations are expressed as a NeboExpression consisting the various individual operations in
the form of an AST. These operations include another template parameter that helps couple the backend/mode that will
be used to execute the particular operation. The Initial mode is the default mode with which expressions are created.

F i e l d a , b , c , out ;
/ / p o p u l a t e a , b , c . . .

out <<= a + b ∗ c ;

The above snippet produces the following NeboExpression when constructed initially at run time:

NeboExpress ion <SumOp< I n i t i a l , NeboCons tF ie ld , ProdOp< I n i t i a l , NeboCons tF ie ld , NeboCons tF ie ld >>

Next, when the assignment is to be carried out or in other words when field out is to be written into, the following
steps are carried out:

(1) For the assignment to be carried out, resource availability is satisfied, if for out active on the CPU, fields a, b and
c are available and valid on the CPU device’s memory. The same applies for GPU as well if it is the active device
for out.

(2) Depending on the location of the field to be computed, the backend is selected for runtime deployment. The
options presently supported in Nebo are the sequential (§5.1), CPU-parallel (§5.2) andGPU-parallel (§5.3) backends.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Ravichandran et al

5.1 Sequential Backend

NeboExpress ion <SumOp<SeqWalk , NeboCons tF ie ld , ProdOp<SeqWalk , NeboCons tF ie ld , NeboCons tF ie ld >>

The above expression is created and is evaluated for every point across the extents of the field out as follows:

for (in t z = l i m i t s . ge t_minus (2) ; z < l i m i t s . g e t _ p l u s (2) ; z ++) {
for (in t y = l i m i t s . ge t_minus (1) ; y < l i m i t s . g e t _ p l u s (1) ; y++) {

for (in t x = l i m i t s . ge t_minus (0) ; x < l i m i t s . g e t _ p l u s (0) ; x ++) {
out (x , y , z) = rhs . e v a l (x , y , z) ; / / r h s i s t h e N e b o E x p r e s s i o n

}
}

}

5.2 CPU-Parallel

NeboExpress ion <SumOp<Res i z e , NeboCons tF ie ld , ProdOp<Res i z e , NeboCons tF ie ld , NeboCons tF ie ld >>

The Resize mode is similar in execution to the SeqWalk mode in that each thread spawned executes the sequential
code shown above but on a partition of the space/extents. Basically, based on the number of threads specified during
deployment, partitions of the space are created and each partition is scheduled in a FIFO work queue, each with a
instance of the NeboExpression created in Resize mode. Semaphores are used to synchronize onto the main thread
once all the jobs are complete.
5.3 GPU-Parallel

NeboExpress ion <SumOp<GPUWalk , NeboCons tF ie ld , ProdOp<GPUWalk , NeboCons tF ie ld , NeboCons tF ie ld >>

The CUDA kernel spawned by Nebo is one that spans 256 (16x16) blocks and a grid size based on the extents of the
field as shown below.

in t blockDim = 1 6 ;
in t xGDim = xEx t en t / blockDim + ((xEx t en t % blockDim) > 0 ? 1 : 0) ;
in t yGDim = yEx ten t / blockDim + ((yEx t en t % blockDim) > 0 ? 1 : 0) ;
dim3 dimBlock (blockDim , blockDim) ;
dim3 dimGrid (xGDim , yGDim) ;

Since the threads are created across two dimensions the GPUWalk loop is slightly different in comparison to the SeqWalk
loop.

const int i i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
const int j j = b l o c k I d x . y ∗ blockDim . y + t h r e a d I d x . y ;
const int x = i i + xLow ;
const int y = j j + yLow ;
for (in t z = zLow ; z < zHigh ; z ++) {

/ / r h s i s t h e N e b o E x p r e s s i o n i n GPUWalk mode

i f (v a l i d ()) { out (x , y , z) = rhs . e v a l (x , y , z) ; } ;
} ;

The valid() function guards against threads that are assigned outside the extents by CUDA as threads are assigned
consistently across blocks. The end user is expected to handle some synchronization because Nebo uses asynchronous
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Progress with Nebo: A portable, performant EDSL for multiphysics applications 7

kernel invocations. For instance, in Wasatch synchronization is handled by initializing CUDA streams and associating
them with fields [Earl et al. 2017].
6 RECENT EXTENSIONS TO NEBO

6.1 Particle - Cell interpolation

For multiphase systems including the Lagrangian transport of particles within an Eulerian mesh, we frequently
require interpolation between particle properties and mesh properties, e.g. between a ParticleField and a CellField
(volume).

When performing these operations, particle size is needed to determine the overlap of particles with cells (e.g.,
when a particle is crossing cell boundaries). This, together with information on the mesh itself, is used to interpolate
information between particles and cells:

Mesh mesh ;
C e l l F i e l d t _ c e l l ;
P a r t i c l e F i e l d t _ p a r t i c l e ;
P a r t i c l e F i e l d p_x , p_y , p_z ; / / p a r t i c l e p o s i t i o n s

P a r t i c l e F i e l d d_p ; / / p a r t i c l e d i ame t e r

/ / . . .

C e l l T o P a r t i c l e c2p (mesh) ;
c2p . s e t _ c o o r d i n a t e _ i n f o rma t i o n (&p_x , &p_y , &p_z , &d_p) ;
c2p . a p p l y _ t o _ f i e l d (t _ c e l l , t _ p a r t i c l e) ;

Pointers are provided to the set_coordinate_information method to allow for degenerate 2D and 1D cases.

Fig. 3. Speedup when using direct-injection rather than
trilinear interpolation in particle to cell interpolants.

In some cases, we may want to only consider the particle cen-
troid rather than distributing information about the particle to all
cells that it encounters. This is particularly attractive in regimes
where the particle diameter is small relative to the cell size. Figure
3 illustrates the speedup observed when doing ‘direct-injection’
rather than interpolation. In obtaining these results, particles were
randomly distributed through various domain sizes with an aver-
age particle number density of 0.1, 1 and 10 particles per cell.

Nebo also supports GPU execution for particle-cell interpolants.
Speedups for GPU relative to single-core execution are shown in
Figure 4. For larger mesh sizes we observe speedups of 40-50×.

Fig. 4. Speedup achieved by running the interpolation on GPU.
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Ravichandran et al

6.2 Mapped Reduction

The mapped reduction operation was created with the intention of running computations to allow simulation of
Smoothed-Particle Hydrodynamics (SPH). Let us illustrate this with an example.

P a r t i c l e F i e l d p_x , p_y , p_z ; / / p a r t i c l e p o s i t i o n s

double h ; / / smoo th ing r a d i u s

double mass_p ; / / p a r t i c l e mass

s i z e _ t n ; / / number o f p a r t i c l e s

I n tVec min_domain , max_domain ; / / r e p r e s e n t s im u l a t i o n s p a c e bounds

RangeSearch rangeSea r ch (. . . , min_domain , max_domain , n , h , &p_x , &p_y , &p_z) ;

P a r t i c l e F i e l d v_x , v_y , v_z ; / / p a r t i c l e v e l o c i t i e s

P a r t i c l e F i e l d d e n s i t y _ t ; / / d e n s i t y a t t ime s t e p

d e n s i t y _ t <<= nebo_mapped_reduct ion (mass_p ∗
((l o c a l (v_x) − v_x) ∗ (l o c a l (p_x)−p_x)

+ (l o c a l (v_y) − v_y) ∗ (l o c a l (p_y)−p_y)
+ (l o c a l (v_z) − v_z) ∗ (l o c a l (p_z)−p_z))
∗ W(mapped_value ()) , r angeSea r ch . g e t Cu r r e n t S t a t e ())

The above snippet is essentially running ρi =
∑
jm ∗ vi j ∗W (di j). That is, for every particle i , we perform a

summation over all particles j (otherwise referred to as a mapping) that fall within the smoothing radius of particle i .
We perform a range search to find this mapping for each particle via the construction of a RangeSearch object, which
is wrapped by Nebo as a mapper.W represents a kernel function for SPH computation and di j represents the distance
between particle i and j. vi j represents the relative velocity between the i and j particles.

The nebo_mapped_reduction() function takes in two parameters, the first being a nebo expression and the second
being the current state of the mapper which provides the mapping (set of points) over which the reduction (summation
in the example) is performed. The fields in the nebo expression are indexed based on the mapping and in order to
access the value of particle i , we use the local() operator. The distance between a given pair of particles ij is given by
mapped_value() in the case of range search. In general, mapped_value() is meant to access any value provided by the
mapper on which basis the mapping was produced.

Fig. 5. In the image on the left, the red particles repre-
sent all particles that fall within the smoothing radius
of the yellow particle. The image on the right represents
how construction of a uniform grid reduces the search.

The RangeSearch object constructs a uniform grid structure
based on the bounds of the particles and the smoothing radius.
Based on the size of the each cell in the grid, we essentially reduce
the computation needed to locate the particles that fall within
the smoothing radius of a given particle, as we can restrict our
search to only a certain set of adjacent cells. Figure 5 illustrates how
constructing a uniform grid with cell size h/

√
2, reduces search to

only the adjacent 20 cells.
Experiments from running mapped reductions on particle sets

were also carried out using a RangeSearchmapper. Each time step
involved three mapped reduction operations each for density, x-velocity and y-velocity. They also involved several
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Progress with Nebo: A portable, performant EDSL for multiphysics applications 9

assignments to update the positions of the particles. Figure 6 shows speedups relative to single-core timings for various
numbers of particles. The experiment was deployed to operate on 48 threads on 24-core system and a tesla K80 GPU.

Fig. 6. Multi-core and GPU speedup relative to
sequential execution of mapped reductions.

The mapped_value() node which is used to access the distance
(di j) is currently not functional for a GPU backend. This causes the
GPU speedup to saturate after around 2500 particles. We expect the
mapped_value() node to be extended in future and achieve better
speedups on a GPU backend at larger particle counts.

6.3 Kokkos Integration

Kokkos implements a programming model in C++ for writing
performance-portable applications targeting all major HPC platforms
[Edwards et al. 2014]. It provides abstractions for both parallel execu-
tion and data management. We have implemented a Kokkos backend in
Nebo to compare it to Nebo’s native backend. Kokkos presently provides support for four platforms: Serial, OpenMP,
PThreads and CUDA. Instead of initializing our execution space within Nebo and calling a mode specific assign (like we
saw in §5), we call a kokkos_assign function as shown below.

/ / E x e c u t i o n s p a c e r e f e r s t o t h e Kokkos p l a t f o rm : S e r i a l , Cuda , e t c .

/ / GPU f l a g i s u s ed i n t e r n a l l y t o g e n e r a t e t h e a p p r o p r i a t e f u n c t o r wrapper

/ / Lhs and Rhs t y p e s a r e i n f e r r e d

template <typename Execu t ionSpace , bool GPU , typename LhsType , typename RhsType >
in l ine s t a t i c void kokkos_a s s i gn (LhsType lhs ,

RhsType rhs ,
I n tVec const & ex t en t s ,
GhostData const & ghos t s ,
I n tVec const & hasBC ,
GhostData const l i m i t s)

{
const int xEx t en t = l i m i t s . g e t _ p l u s (0) − l i m i t s . ge t_minus (0) ;
const int yEx ten t = l i m i t s . g e t _ p l u s (1) − l i m i t s . ge t_minus (1) ;
const int zEx t en t = l i m i t s . g e t _ p l u s (2) − l i m i t s . ge t_minus (2) ;
const int l e ng t h = s t a t i c _ c a s t < int >(xEx t en t ∗ yEx ten t ∗ zEx t en t) ;

/ / Kokkos f u n c t i o n t o e x e c u t e t h e f u n c t o r wrapper ba s ed on t h e e x e c u t i o n s p a c e

Kokkos : : p a r a l l e l _ f o r (Kokkos : : RangePo l i cy <Execu t ionSpace , int > (0 , l e ng t h) ,
KokkosFunctorWrapper <LhsType , RhsType , GPU>(lhs , rhs , l i m i t s)) ;

}

We have achieved no speedup by integrating Kokkos with Nebo across varying domain sizes and type of operations
for sequential execution. We speculate this to be occurring due to Kokkos’s flat indexing scheme in comparison to
Nebo’s triple indexing. Having to switch from a flat index to a triple index for every functor call is an expensive
operation for large domain sizes. We ran three operations to ascertain performance of the Kokkos backend:

• Simple Addition: f1 <<= f2 + f3

• Compound Statement: f1 <<= cos(pow(sin(pow(f2, f3)), f3))/f3;

• Stencil Statement: f1 <<= DivX(GradX(f2 + f3)) - DivY(GradY(f2 + f3)) - DivZ(GradZ(f2 + f3));

Figure 7 shows speedups on multicore-CPU and GPU relative to the native Nebo implementation.
Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Ravichandran et al

Fig. 7. Multi-core CPU and GPU speedup relative their corresponding native Nebo backends.

The speedups for multi-core CPU are erratic for a domain size of 323 owing to the large amount of time taken by
native Nebo for performing thread synchronization. We could achieve a better speedup but for the conversion between
flat and triple indexing that happens for every evaluation.

7 CONCLUSIONS

Nebo enables application programmers and domain experts to write code that is efficient, scalable, and portable across
multiple architectures. A single code base can be written to scale under parallel architectures (multi-core CPU and
GPU) which clearly outperforms the serial execution. By embedding Nebo in C++, we avoid the need to adopt an
independent compiler (like in other DSLs), thereby also benefiting from a single-phase compilation. Also, by leveraging
operator overloading and the template metaprogramming in C++, Nebo has been able to provide intuitive interfaces
for application programmers to express a large number of computations in their domain. We have extended Nebo to
support computations on particles, and results show reasonable performance on GPU. We have also implemented a
Nebo backend using the Kokkos portable performance library and demonstrated that Kokkos provides speedup relative
to native Nebo backends in some, but not all, cases.

ACKNOWLEDGMENTS

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration,
under Award Number(s) DE-NA0002375.

REFERENCES
M. Berzins, Q. Meng, J. Schmidt, and J. C. Sutherland. 2012. EuroPar 2011: Parallel Processing Workshops. Vol. 7155. Springer, Chapter Dag-based software

frameworks for PDEs, 324–333.
Christopher Earl, Matthew Might, Abhishek Bagusetty, and James C. Sutherland. 2017. Nebo: An efficient, parallel, and portable domain-specific language

for numerically solving partial differential equations. Journal of Systems and Software 125 (March 2017), 389–400. https://doi.org/10.1016/j.jss.2016.01.023
H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling manycore performance portability through polymorphic memory

access patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202 – 3216. https://doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing.

Steven G. Parker. 2002. Computational Science ICCS 2002. Vol. 2331. Springer, Chapter A Component-based Architecture for Parallel Multi-Physics PDE
Simulation, 719–734.

Tony Saad and James C Sutherland. 2016. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and
graph theory. Journal of Computational Science 17, 3 (may 2016), 639–646. https://doi.org/10.1016/j.jocs.2016.04.010

Manuscript submitted to ACM

https://doi.org/10.1016/j.jss.2016.01.023
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jocs.2016.04.010

	Abstract
	1 Introduction
	2 Constructs
	2.1 Spatial Fields
	2.2 Spatial Masks

	3 Traditional Nebo Operations
	3.1 Mathematical Operators
	3.2 Assignment
	3.3 Conditional
	3.4 Reduction
	3.5 Stencils

	4 AST creation
	5 Execution Modes/Backends
	5.1 Sequential Backend
	5.2 CPU-Parallel
	5.3 GPU-Parallel

	6 Recent Extensions to Nebo
	6.1 Particle - Cell interpolation
	6.2 Mapped Reduction
	6.3 Kokkos Integration

	7 Conclusions
	Acknowledgments
	References

