
CPU Volume Rendering of Adaptive Mesh Refinement Data
Ingo Wald

Intel

Carson Brownlee

Intel

Will Usher

SCI Institute, University of Utah

Aaron Knoll

SCI Institute, University of Utah

Figure 1: Two examples of our method (integrated within the OSPRay ray tracer): Left: 1.8 GB Cosmos AMR data, rendered in ParaView. Right:
a 57 GB NASA Chombo simulation, rendered with ambient occlusion and shadows alongside mesh geometry.

ABSTRACT
Adaptive Mesh Refinement (AMR) methods are widespread in scien-

tific computing, and visualizing the resulting data with efficient and

accurate rendering methods can be vital for enabling interactive

data exploration. In this work, we detail a comprehensive solution

for directly volume rendering block-structured (Berger-Colella)

AMR data in the OSPRay interactive CPU ray tracing framework.

In particular, we contribute a general method for representing and

traversing AMR data using a kd-tree structure, and four different re-

construction options, one of which in particular (the basis function

approach) is novel compared to existing methods. We demonstrate

our system on two types of block-structured AMR data and com-

pressed scalar field data, and show how it can be easily used in

existing production-ready applications through a prototypical inte-

gration in the widely used visualization program ParaView.

CCS CONCEPTS
•Computingmethodologies→Ray tracing; •Human-centered
computing → Scientific visualization;

KEYWORDS
Ray Tracing, Volume Ray Tracing, Adaptive Mesh Refinement

(AMR), Berger Colella AMR Scheme

ACM Reference format:
Ingo Wald, Carson Brownlee, Will Usher, and Aaron Knoll. 2017. CPU

Volume Rendering of Adaptive Mesh Refinement Data. In Proceedings of SA
’17 Symposium on Visualization, Bangkok, Thailand, November 27-30, 2017,
8 pages.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5411-0/17/11.

https://doi.org/10.1145/3139295.3139305

https://doi.org/10.1145/3139295.3139305

1 INTRODUCTION
Adaptive Mesh Refinement (AMR) describes a family of techniques

allowing meshes to represent computational domains in an adap-

tive fashion, using higher resolution meshes to effectively compute

multiscale phenomena with specific spatial regions of interest. One

of the most popular and general approaches for rectilinear grid

data is that of Berger and Colella [Berger and Colella 1989], com-

monly referred to as “block-structured AMR” (for our purposes, de-

noted BC AMR). BC AMR forms the basis for many codes including

LAVA [Kiris et al. 2014], Chombo [Colella et al. 2000], GR-Chombo,
used for the COSMOS gravitational waves simulation grchombo,
and Enzo [O’shea et al. 2005], a radiation-hydrodynamics cosmic

web code. Though other forms of AMR exist, block-structured AMR

is perhaps the most general in that its structure could be used for

octree and recursive-grid AMR with few modifications.

Despite the widespread application of AMR methods in high

performance computing, methods for visualizing AMR data remain

either inefficient or special-purpose.Widely used visualization pack-

ages such as VTK, ParaView, and VisIt have some level of support

for BC AMR data, but rendering such data at interactive frame rates,

with high visual quality (without cracks, holes, or artifacts), remains

a challenge. As most visualization software pipelines are designed

for non-adaptive data, data readers in these tools often “flatten”

AMR data into regular grids for rendering, at the expense of signifi-

cant time and memory. Moreover, visualizing specific coarser AMR

levels, as shown in Figure 2, may be desirable for validation. How-

ever, existing direct rendering mechanisms for AMR data rely on

their own internal data formats, and are often built for specific archi-

tectures (i.e., GPUs). While numerous GPU AMR implementations

exist, they have not by and large been integrated into production

visualization pipelines, chiefly due to the special-purpose nature of

both the hardware and data they were designed to support. Efficient

https://doi.org/10.1145/3139295.3139305
https://doi.org/10.1145/3139295.3139305

SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand Ingo Wald, Carson Brownlee, Will Usher, and Aaron Knoll

(a) Level 0-1 (b) Level 0-2 (c) Level 0-3 (d) Level 0-4
Figure 2: Different AMR levels on the Landing Gear, using the blend
method (Section 4.3).

and general means of directly rendering AMR data on the CPU re-

main desirable – due to the prevalence of CPU architectures in HPC

and their large on-board memory, which helps in visualizing larger

data on fewer resources.

In this paper, we detail a CPU-based approach for direct volume

rendering of AMR data. Our contributions are:

• Four strategies for reconstruction of BC AMR data, one

of which in particular (basis functions) is non-trivial and

novel in that it interpolates across all AMR levels, reme-

dies stitching artifacts, and does not rely on interpolation of

non-rectilinear grids.

• A general data structure for efficient query, sampling and

direct rendering of Berger-Colella AMR data, adapted for

Chombo and VTK hierarchical grid data, suitable for any

block-structured, recursive-grid or octree data.

• Implementation of these methods in the OSPRay CPU ray

tracing framework and integration with ParaView for use in

production.

We show that our implementation is competitive in performance

with existing approaches, presents novel sampling methods, re-

quires relatively modest hardware resources, supports full ray trac-

ing of AMR volume data (including volumetric lighting, ambient

occlusion, and proper integration with geometric surfaces, Fig. 8),

and moreover provides a general framework for AMR visualization

with a variety of reconstruction options.

2 RELATEDWORK
Adaptive mesh refinement was first introduced by Berger and

Oliger [Berger and Oliger 1984], using binary decomposition struc-

tures (quadtree, octree) in which refinement levels advanced by one

step. More general block structured AMR data, consisting of nested

grids of arbitrary dimension, was later proposed by Berger and

Colella [Berger and Colella 1989]. This has subsequently been used

in computational packages such as Chombo [Colella et al. 2000],

GR-Chombo [Clough et al. 2015], Enzo [O’shea et al. 2005], etc.

The earliest AMR volume rendering system was introduced by

Ma and Crockett [Ma and Crockett 1997] and was based on cell

projection [Max 1993]. This approach was later extended to support

MPI parallel rendering [Ma 1999]. Park et al. [Park et al. 2002]

then used splatting to render interactively on a single workstation.

Though efficient, resampling and rasterizing the AMR field into

polygonal data could result in interpolation artifacts. Later GPU

approaches employed special-case ray casting solutions to achieve

interactive performance. Kahler and Hege [Kähler and Hege 2002]

used slice-based volume rendering of 3D textures on the GPU to

locally represent and resample AMR blocks, overlapping coarse

and fine-resolution AMR levels. This system was later extended to

P

Cij

Ci+i,j+1

Dij

Ci+i,j+1

Cij

P

Ci+i,j+1

Cij

P

Figure 3: Trilinear interpolation for regular grids: For node-
centered data (left) one simply interpolates between the cell ver-
tices. For cell-centered data (center) one interpolates the respective
dual grid (right).

use GPU ray casting, first by compositing multiple passes [Kähler

et al. 2006] and then in a single pass [Kähler and Abel 2013]. Later

GPU approaches employed more sophisticated and special-purpose

techniques. Gosink [Gosink et al. 2008] devised an out-of-core query

mechanism for resampling AMR data into structured volumes for

rendering on the GPU. Marchesin and de Verdiere [Marchesin and

De Verdiere 2009] employed a special-case solution for analytical

ray casting of hexahedral cell data using piecewise-polynomial

approximations, subdividing coarse AMR cells at junctions. More

recently, Leaf et al. [Leaf et al. 2013] showed an efficient method for

rendering AMR data in distributed parallel settings, using a method

similar to that of Ljung [Ljung et al. 2006].

The problem of interpolating or “stitching” between adjacent

AMR cells of different resolution recurs in the literature. Weber et

al. [Weber et al. 2012, 2003] subdivide lower-resolution hexahedral

cells into multiple stitch cells and reformulate the interpolant ac-

cordingly. Moran and Ellsworth [Moran and Ellsworth 2011] extend

this to AMR cells differing in resolution by more than one level.

As with [Beyer et al. 2008], the latter performs reconstruction at

boundaries by subdividing cell-centered data into non-rectilinear

simplicial elements (i.e., tet, hex). Our basis function method ad-

dresses this issue without subdividing.

Our actual implementation builds upon OSPRay [Wald et al.

2017], a general-purpose framework for ray-tracing based visual-

ization. The approaches in this work are not specific to OSPRay or

SPMD ray tracing, and would generalize to other rendering systems

and architectures.

3 BACKGROUND
AMR data are used to compute and represent multiscale continuous

phenomena. While AMR attributes may represent vector or tensor

fields and overlaid particle data, they are most commonly used

to represent scalar fields. For the purposes of this work we are

concerned with three-dimensional data evolving over time, i.e. f (®x)
for some ®x = (x ,y, z) ∈ R3. Reconstruction of data from scalar

fields requires a filter, which depends on an underlying grid or

mesh topology of discrete data. For structured rectilinear data the

most common filter kernel is the trilinear interpolant.

In a structured grid, data can be either cell-centered or node-

centered. For single-level structured data this distinction is not

significant, since any cell-centered grid can be treated as the dual of

a node-centered grid (Figure 3). However for multilevel AMR data,

interpretation as node or cell-centered has significant implications,

as discussed in Section 3.2.

CPU Volume Rendering of AMR SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand

a)

Coarse Level Fine Level

P
P

b)

Coarse Level Fine Level

c)

Coarse Level Fine Level

d)

Coarse Level Fine Level

e)

Coarse Level Fine Level

Figure 4: a) For node-centered AMR, both sides of a level boundary form structured node-centered grids that naturally lend to trilinear
interpolation. b) If any stitching is necessary between the different levels’ boundary values, this can easily be done by introducing one layer
of ghost cells, which will always align nicely with both sides (top right). c-e) For cell-centered AMR (c) there are still obvious dual grids in
regions of same refinement level (d), but stitching across the boundary requires unstructured mesh geometry (i.e., tets or hexes) (e).

(a) Finest (b) Current (c) Blend (d) Basis

Figure 5: Reconstruction quality for the four different methods de-
scribed in this paper, on the example of an AMR representation of
the well-known Richtmyer-Meshkov data set (top), and the Land-
ingGear (bottom). The current and blendmethods can in some cases
lead to artifacts we refer to as “ghosting”. Our highest-quality recon-
struction method, basis , does not use inner nodes, and thus never
exhibits this artifact.

3.1 Berger-Colella AMR Data
Berger-Colella AMR data, as shown in Figure 4, is specified as set

of bricks B(i) (i = 0..NBRICKS) of typically around 16 × 16 × 16

data cells each (bricks can have other sizes, but 16 seems a common

value), with a data value specified for the center of each cell. Each

brick lies on a specific level L(i); bricks on the same level do not

overlap, but do overlap other bricks on coarser levels. Where finer

bricks overlap coarser ones they do so in a way that the finer-level

brick aligns with cell boundaries on the coarser level, and such that

each coarser cell is covered by exactly R×R×R finer cells, where R is

called the refinement factor. The root level bricks together generally
form a structured grid; finer levels are typically sparse.

Reconstruction Goals. There is no single “correct” solution to re-

construction from multilevel AMR data; nearest-neighbor, trilinear

interpolation, and higher-order basis functions are all valid options

for reconstructing structured data, but with different properties.

Likewise, AMR may differ in how blocks are laid out, differences

in resolution between blocks, and desired interpolation behavior

and performance. Generally, we desire a reconstruction technique

that is simple, performant, and smooth. We seek approaches which

are interpolating (i.e. for any point ®x for at which a data value v
exists, F (®x) = v), and moreover, that obey partition-of-unity. Ap-

proaches requiring only local support are preferred for efficiency –

as well as methods that are locally trilinear, but continuous across

level boundaries. The methods described in Section 4 each provide

tradeoffs with respect to these criteria.

3.2 Structure of AMR Data
In this section we characterize the structure of BC AMR data, defin-

ing a common terminology which can then be used when describing

our reconstruction strategies.

Logical Nested Grid Space: In order to abstract from the actual

input data layout (individual bricks on different levels) we refer to

cells in what we call logical nested grid space. We view the AMR

data as a succession of levels L(l) (l = 0..maxLevel), where each
level is logically a structured grid (an AMR block, or patch) of
N
(l)
x × N

(l)
y × N

(l)
z logical cells C(l)

i, j,k , with the caveat that some

of these cells actually exist, and others do not (see Figure 4). We

refer to those logical cells that do exist in the input as actual cells,
while those that do not as virtual. Each cell C has a center Cp (C.p

in pseudocode below), a levelCl , etc. Actual cells also have a scalar

field value Cv , while virtual ones do not. We can logically extend

this grid to infinity by considering all cells outside the root level’s

bounding box as virtual. For any level l and 3D point ®P we define

an operator C(l)(®P) that maps ®P to the logical cell it lies in.

Closest Existing Cell: For each logical cellC we can further define

what we call the closest existing cell (CEC) Ĉ of C: if C is an actual

cell, its CEC is just that; if it is not, we define Ĉ as the finest-level cell

for that location that a vertex of that cell (denoted Cp) lies in. We

assume that this CEC-operator will, for any vertex Cp outside this

bounding box, move Cp to its respectively closest position inside

the domain. Similarly, we can define the closest existing level-l cell

Ĉ(l)(®P) as the CEC ofCl (®P); and the closest existing leaf (CEL) Ĉ(®P),
where a leaf cell is the lowest level actual cell at point P with scalar

values.

Dual Cell: Using our logical grid terminology allowed us to more

easily reason about logical cells C
(l)
i, j,k . In a similar fashion, we

can now define logical dual cells D
(l)
i, j,k , spanned by C

(l)
i, j,k and

C
(l)
i+1, j+1,k+1. As with logical cells, we assume that there is a kernel

D(l)(®P) that computes the coordinates of the dual cell, as well as the

CEC of each of its 8 corner vertices. For each of these corners we

have access to both its logical coordinates C as well as the actual
coordinates (and value) of its CEC, Ĉ . This allows for determining

which of the corners C actually exist (C = Ĉ), and which ones are

virtual (C , Ĉ).
Cell Location: In all our methods we assume that it is possible to

efficiently query cells, dual cells, etc. In our pseudo-codeswe assume

a kernel findLeaf(P) that finds the CEL of ®P , a findCell(l,P)
that finds the CEC C(l)(®P), a findDual(l,P) that finds the level-l

SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand Ingo Wald, Carson Brownlee, Will Usher, and Aaron Knoll

dual cell D(l)(®P) (and the CECs of its corners), and a D.lerp(P)
that computes trilinear interpolation inside D.

4 RECONSTRUCTION STRATEGIES
Similar to nearest-neighbor filtering for textures or structured data,

the simplest reconstruction strategy is to look up the leaf cell con-

taining the query point, and return its value:

float nearest(P)
C = findLeaf(P)
return C.v

This is fast and simple, but not continuous even in same-level

regions, which rather limits is usefulness.

4.1 Finest-Level Interpolation
Thanks to our logical grid abstraction we can view each specific

level as a structured grid, with values for non-existing cells defined

through the CEC operator. In particular, this allows for picking any

logical level l , and trilinearly interpolating on it. This approach is

cheap and continuous, but not adaptive. The logical grid is cell-

centered, but can be interpolated using its dual:

float lerpOnLevel(l,P)
D = findDual(l,P)
return D.lerp(P)

4.2 Current-Sample Leaf-Level Interpolation
Rather than use a fixed level, we can also, for each sample, look

up that sample’s leaf level, and then interpolate on that level. This

current method is no longer continuous across level boundaries, but

otherwise quite useful: it is adaptive, locally trilinear, simple, and

fast. In particular, in all regions except boundaries it is the same as

trilinear interpolation on that given region’s leaf level.

float leafLevelLerp(P)
C = findLeafCell(p)
return lerpOnLevel(C.l,P)

4.3 Blending Between Levels
The cause of the previous method’s discontinuities is that, though

each level’s interpolant is continuous, what we used for selecting

the level is not. One way of fixing this is to smoothly blend between

levels. In particular, we can view virtual cells as transparent, and

actual ones as opaque. We can then assign opacities of 1 and 0 to

the centers of actual and virtual cells respectively, and trilinearly

interpolate between these. This yields a continuous blending func-

tion that we can use to blend between any level l and the coarser

one(s) below:

float blendNaive(P)
float f = 0
for (level =0,1,.. MAXLEVEL)

(f_l ,a_l) = lerpOnLevel(l,P)
if (a_l == 0) break
f = a_l*f_l+(1-a_l)*f

return f

In homogeneous regions, this method is the same as trilinear

interpolation on that level; across boundaries it smoothly blends

between the adjoining regions’ interpolants. This method is thus

adaptive and continuous; and (though less obviously so) interpolat-

ing. It is however expensive, as it would have to perform a dual-cell

look-up on every level. In practice, however, very few levels will

contribute to any point ®x : many fine levels will be completely trans-

parent at ®x , and everything below a completely opaque level would

be weighted by 0. This suggests an optimization where we either

start at the coarsest level and blend “upwards” until we reach a

completely transparent level (at which point no finer levels can

contribute); or start at the finest one and blend “downwards” until

we reach a completely opaque one. In fact, we can start at the leaf

level of ®x , and then blend both upwards and downwards until the

finest and coarsest contributing levels have been found. This faster

blend approach, is implemented as follows:

float blendFast(P)
// find leaf level , and lerp
C = findLeafCell(P)
D = findDualCell(C.l,P)
f = D.lerp()
// blend towards finer
D' = D
for (l = C.l+1 ... MAXLEVEL)

if (all vertices of D' are leaves) break
D' = findDualCell(l,P)
(f_l ,a_l) = D'.lerp(P)
f = a_l*f_l + (1-a_l)*f

// blend towards coarser
if (any vertices in D are virtual) {

a = D.lerpAlpha(P) //lerp only alpha
f = f*a
for (l = C.l-1 ... 0)

D' = findDualCell(l,P)
f += (1-a) * D'.lerp(P)
if (all vertices in D' exist) break
a += (1-a)*D'. lerpAlpha(P)

return f;

4.3.1 Ghosting Artifacts. Both the current and blend approaches

can lead to an unwanted artifact we refer to as ghosting, shown in

Figure 5. This occurs when a given coarse cell has a neighbor that

is further refined, and whose fine values undergo a sharp transition

from one value to the next. In this case, for reconstruction methods

that involve the neighboring cell’s inner value (as happens for

both current and blend) the value used by this interpolant is not

representative of the fine cells’ values at the boundary.

Note in particular, this effect is not the same as a discontinuity,

and can appear even when smoothly and continuously blending

across levels. That said, the artifact is rather rare, and limited to

strongly varying data sets rendered with spiky transfer functions. It

can also be avoided by employing filters that never user inner-node

values, such as the basis method presented in the following section.

4.4 Reconstruction via Basis Functions
Though often seen as a form of “blending” between extremal values,

regular trilinear interpolation can also be viewed as the sum of 8

Ci+1Ci

support of basis fcts

1−D structured grid

1D basis fcts

Sample point P

a c eb d f g

1−D AMR grid

support of basis fcts

hat−shaped basis functions

coarse levelfine level

P0 P1 P2 P3

Figure 6: 1D-illustration of reconstruction via basis functions. Left:
trilinear interpolation as a sum of linear (hat) basis functions. In
this case, the basis functions sum to 1, and only one basis function
has non-zero support at any data point. Right: The same for our gen-
eralization toBCAMRdata: the function is still smooth, continuous,
and adaptive, but at least at level boundaries the basis functions no
longer sum to 1, and may overlap multiple fine-level cells.

CPU Volume Rendering of AMR SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand

hat-shaped basis functions located at the dual cell’s corners:

lerp(®P ,D) =
∑

C ∈corners(D)

ĤC (®P)Cv , (1)

using the hat-shaped basis functions:

ĤC (®P) = ˆh

(
| ®Cp,x − ®Px |

Cw

)
ˆh

(
| ®Cp,y − ®Py |

Cw

)
ˆh

(
| ®Cp,z − ®Pz |

Cw

)
, (2)

with
ˆh(t) = max(1 − t , 0). For each cell C this basis function would

be centered at Cp and have a support width of ±Cw .

Borrowing some concepts from scattered data interpolation tech-

niques (see, e.g. [Franke and Nielson 1980]) we can now view our

AMR data points as a sort of scattered data points (Ci)
N
i=0 with basis

functions ĤC , and—using Franke-style scattered data interpolation—

can reconstruct via a weighted and re-normalized sum of those basis

functions:

AMRbasis (®P) =

∑
Ci ĤCi (

®P)Cvi∑
Ci ĤCi (

®P)
(3)

Though Franke’s scattered-data interpolation method does not spec-

ify which basis functions to use (and is often used with Gaussian or

other basis functions), our choice of ĤC is deliberate: they are easy

to compute, and in most regions will automatically yield exactly

the same interpolant as trilinear interpolation. Around boundaries

we get the superposition of basis functions from different levels,

which will smoothly blend between levels; and as we never use

virtual or inner cells we see significantly reduced ghosting.

For any point ®P , computing this interpolant requires finding all

leaf cells C that have non-zero contribution at ®P . For our choice of
basis function, on each level L only the eight corners of ®P ’s dual cell
can possibly contribute, leading to a very simple implementation:

float AMR_basis(P) =
float sum_weights = 0
float sum_weightedValues = 0
for (l = 0 ...)

D=findDualCell(P)
foreach corner cell C of D

if (C is a leaf cell)
sum_weights += H_hat(P,C)
sum_weightedValues += H_hat(P,C)*C.v

if (none of the C in D are inner nodes)
break

return sum_weightedValues / sum_weights

The basis function method is illustrated in Figure 6. On the

upside, this interpolant is easy to implement, smooth, continuous,

and produces good image quality. On the downside, it is no longer

strictly interpolating, and also no longer obvious how to do implicit

ray-isosurface intersection. In terms of performance, we can easily

determine the finest level that contributes, but have not yet found
a good way of knowing the coarsest one that does; this means that

in deeply refined regions we potentially have to perform many

dual-cell look-ups, which is costly.

5 IMPLEMENTATION
This section details the implementation of the AMR data structure,

traversal and rendering methods in OSPRay.

5.1 AMR KD-Tree and Cell Location
Regardless of the context of ray tracing where we want to use our

reconstruction strategies, we need efficient methods to compute

the cell location kernels they are built on. Our initial approach used

a multi-octree data structure, whose traversal was efficient, but

required completely reformating the input data; and thus could not

directly operate on native VTK data, instead requiring at least one

copy of the data.

To remedy this, we adopted an alternative approach similar to a

median-split kd-tree build: we start by looking at all bricks across

all levels, and compute the world space bounding box of these

bricks. We then recursively partition this space as follows: First,

we determine a list of all block boundaries that intersect the space

we want to partition (each such boundary defines an axis-aligned

plane). We then pick one of those as a kd-tree partitioning plane—

we currently use the one closest to the spatial median—and use

this to partition the current domain into left and right halves. We

then go over all blocks in the current region and sort them into

those overlapping the left half, and those overlapping the right;

those that overlap both (which is perfectly possible in BC AMR) go

into both. Finally, we recurse on the left and right halves until no

more boundary plane overlaps the current region, in which case we

make a leaf. We can easily build this data structure over an existing

vtkHierarchicalBoxDataSet structure as used by ParaView’s and
VitIt’s Chombo readers, without replicating any of the voxels. An

illustration of this data structure and its construction is given in

Figure 7.

a) three−level AMR Data Set

f) top two k−d tree levels g) top three k−d tree levelse) first k−d tree partition h) entire k−d tree w/ some sample regions

C2

C1

d) level 3 (three blocks)c) level 2 (three blcocks)b) level 1 (four blocks)

A0 A1

A2 A3

B1 B2

B3

C3

b c
d

e

a

Figure 7: Illustration of the kd-tree we build over unique block re-
gions. a-d) A sample BC AMR data set consisting of 10 data blocks
across 3 levels e-g) The first three subdivions performed by the k-d
tree builder. h) The full k-d tree, with some sample regions ‘a’-‘e’.
Any brick may be referenced by multiple leaves, and leaves typi-
cally cover many cells; but each leaf refers to a spatial region that
contains exactly one brick per level it covers.

5.2 OSPRay Integration
Though the reconstruction strategies and kernels are generally

applicable, for the remainder of this paper we consider an imple-

mentation within the OSPRay ray tracing framework [Wald et al.

2017]. OSPRay already comes with a ray tracer, a renderer that sup-

ports volume ray casting, and with ready abstractions to implement

new volume types. To make it support our methods, we had to set

up the data structures and build the kd-tree; and implement the

cell location kernels and reconstruction strategies described previ-

ously. Once the respective ospray::ChomboVolume data type was
implemented, it worked out-of-the-box with OSPRay’s exisiting

renderers.

SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand Ingo Wald, Carson Brownlee, Will Usher, and Aaron Knoll

Figure 8: Left to Right: The landing gear with volume ray march-
ing of the AMR data, volumetric shadows, ambient occlusion and
volumetric shadows.

5.3 Fast Cell/Dual-Cell Queries
The key factor determining rendering performance is how quickly

we can perform cell and dual cell queries. We implemented our

reconstruction kernels in ISPC, performing N reconstructions (and

correspondingly, N cell/dual cell queries) in parallel (where N is

the vector width of the underlying CPU architecture). Rather than

operating on logical integer IDs for cells and levels we reference

cells by their (float) center point and levels by their (float) center

width, which better utilizes floating point units, minimizes regis-

ter pressure and stack space, avoids costly int-to-float conversions

when traversing the data structure, and allows for utilizing modern

vector units’ multiply-add capabilities (even some of the address

computations inside each brick can be done in floating point!). In ad-

dition, we implemented cell location in a “packet” paradigm [Wald

et al. 2001] in which all N queries stay together while going down

the tree, and realized the recursion with a software-maintained

stack. These optimized kernels were an order of magnitude faster

than the scalar reference code.

For dual-cell query we implemented a special variant built on

the packetized cell location kernel which actually performs all 8

corner queries in a single traversal. To do this, we view the 8 vertex

locations as the intersection of three sets of parallel planes (the

planes that form the boundary of the dual cell), and traverse these

planes down the kd-tree. At each kd-tree node we check on which

side of the node’s partitioning plane the respective query planes

lie, and can consequently track, with only 6 state variables, which

of the planes are active in a given subtree. Once a leaf is reached,

which of the 6 planes are active defines which of the 8 corner values

are active, and those that are can be filled from the brick stored in

the given leaf.

5.4 VTK and ParaView
OSPRay was officially integrated into VTK 7.1 and ParaView 5.0

with support for surface rendering and volume rendering of regular

grids. Before our framework existed, ParaView handled AMR data

by loading it into a vtkAMR data structure (which implements a

Berger Colella layout), and resampling this into a structured vol-

ume, from which it could be rendered using the standard volume

renderer. This also worked with ParaView’s OSPRay volume ren-

derer, but incurred the cost in memory and resampling time, as

well as the quality issues of resampling. In order to directly volume

render the vtkAMR structure, we created a vtkAMRVolumeMapper
that does not resample the data, and which instead directly maps

the vtkAMR structure to OSPRay’s internal AMR representation,

using zero-copy memory sharing where possible. This results in a

direct implementation in ParaView with little memory overhead,

which is also able to render with OSPRay geometry and composite

with ParaView’s OpenGL framebuffer. A still from a resulting movie

rendered with our implementation in ParaView is shown in Fig 1.

6 RESULTS
We evaluate the presented techniques using two machines repre-

sentative of typical HPC resources for scientific visualization: a

dual-socket workstation, and some of the Intel Xeon Phi “Knights

Landing” nodes on the “Stampede 2” supercomputer. The Xeon

workstation has two Intel Xeon E5-2699 v4 CPUs, with a total of

44 cores (88 threads) running at 2.2 GHz, with 256 GB of RAM and

a Matrox MGA G200e for display. The Stampede KNL nodes are

compute nodes within the Stampede 2 supercomputer at the Texas

Advanced Computing Center. In this setup we used VNC for remote

rendering, using OpenSWR-enabled Mesa to drive the viewer’s user

interface. The KNL nodes use Intel Xeon Phi 7250 “Knights Landing”

(KNL) processors with 68 cores (4 hardware threads per core), and

16 GB of MCDRAM in cache mode, as well as 96 GB of DDR4 RAM.

For benchmarking we use three AMR data sets: LandingGear is a
Chombo [Colella et al. 2000] data set provided by NASA AMES with

9 refinement levels; BHM (black holemerger) is a GR-Chombo [Clough

et al. 2015] simulation of gravitational waves resulting from the

collision of two black holes with 3 refinement levels, provided by

Cambridge’s COSMOS team; and spheres is a direct numerical

simulation of flow around a sphere by Trebotich et al. [Trebotich

and Graves 2015], with 3 levels that each have a refinement factor

of 4.

In addition, we wrote a tool that converts a structured input

volume into Chombo-style AMR by first bricking it into 16
3
bricks,

then eliminating all bricks whose value does not vary beyond a

given threshold. We applied this process to various structured data

sets such as the 2k3 Richtmyer-Meshkov instability LLNL, and the

2048× 512× 1536 voxel DNS data set of turbulent channel flow [Lee

et al. 2013].

6.1 Rendering Quality
We show comparisons of the LandingGear dataset from levels 0-4

in Figure 2. The coarsest level shows an unrecognizable section of

flow around the landing gear, while finer levels reveal increasingly

smaller details. These images used the blend method to smoothly

interpolate across all levels. To demonstrate the differences between

the sampling strategies Figure 5 shows zoomed-in sections of the

LandingGear and LLNL datasets: In those images the finest method

produced artifact-free images for the converted LLNL, for which it

actually produces exactly the same output as the original structured

model would have yielded before converting it to AMR. For “true”

AMR, however, finest can yield artifacts at course cell boundaries,

caused by high-frequency transitions between two neighboring

Figure 9: Images of the benchmarking scenes: BHM, Sphere Flow, LLNL,
and DNS.

CPU Volume Rendering of AMR SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand

Table 1: Rendering performance on a dual-Xeon workstation in
frames per second for varying reconstruction filters and maximum
AMR levels. For reference, the last column on the right shows per-
formance on a single KNL node on Stampede 2.

LandingGear 57GB lvl0 lvl1 lvl2 lvl3 lvl4 knl4

Cells 4 8 52 560 2056 2056

Current 13.12 13.09 8.44 5.35 4.29 2.36

Basis 11.40 11.34 5.79 2.54 1.83 0.99

Blend 12.44 12.12 7.78 4.84 3.88 2.08

Finest 14.65 13.91 9.67 6.31 5.28 2.94

BHM 28GB lvl0 lvl1 lvl2 lvl3 lvl4 knl4

Cells 4096 4098 4106 4114 - 4114

Current 25.00 24.96 25.26 25.58 - 14.52

Basis 29.57 28.59 28.52 27.49 - 15.86

Blend 24.94 25.64 25.36 24.32 - 14.32

Finest 30.48 29.17 26.36 26.25 - 14.93

Sphere 6GB lvl0 lvl1 lvl2 lvl3 lvl4 knl4

Cells 1024 1034 1214 - - 1214

Current 3.79 3.64 3.57 - - 2.22

Basis 3.87 3.89 3.76 - - 2.43

Blend 3.76 3.59 3.47 - - 2.15

Finest 4.36 4.27 4.19 - - 2.77

LLNL 8GB lvl0 lvl1 lvl2 lvl3 lvl4 knl4

Cells 31k 56k 29M - - 29M

Current 4.89 4.31 3.36 - - 1.833

Basis 5.51 4.35 2.76 - - 1.53

Blend 4.77 4.07 3.06 - - 1.68

Finest 5.74 5.72 4.65 - - 2.61

DNS 7GB lvl0 lvl1 lvl2 lvl3 lvl4 knl4

Cells 6144 399k 24M - - 24M

Current 44.51 22.55 5.67 - - 2.88

Basis 50.71 14.08 2.75 - - 1.12

Blend 45.13 22.31 5.52 - - 2.78

Finest 52.81 24.71 6.53 - - 3.49

coarse cells’ values. Current and blend usually perform well in

practice (e.g., in the LandingGear).
It is difficult to compare quality and performance of AMR data

with that of flattened finest-level resolution equivalent structured

grids. For example, for the LandingGear the width of a cell on the

finest level is only 0.00024 times that of the coarsest: sampling the

entire domain this would require roughly 100, 000 voxels per axis,

or 10
15

total voxels.

6.2 Performance Evaluation
Table 1 displays performance for each reconstruction method across

multiple refinement levels (level #0 containing only the coarsest

level, level #4 containing all 5 levels). Performance is measured in

frames per second at 1024×1024 pixels, and with OSPRay’s adaptive

sampling and preintegration enabled. We measure performance

across levels on the 44-core dual-Xeon workstation.

As expected, performance strongly depends on the occurrence of

samples taken in finer (and thus, costlier) regions: The LandingGear
dataset has a high coverage of finer levels in the chosen view, so in-

creasing the maximum reconstruction level results in more samples

taken per ray at increasingly smaller ray steps, and with deeper

refinement levels, resulting in a bigger performance impact. The

BHM dataset has finer levels concentrated at the center of the dataset,
with the majority of the waves being at coarser levels. This results

in finer levels only affecting a small portion of the rays, and thus

performance is almost oblivious to the maximum refinement level.

Finest achieves highest performance but the worst quality, while

basis is most expensive. The current method is a good trade-off; it

has the second highest performance, and though it can produce

ghosting (see Fig. 5) in practice these artifacts are rare.

In terms of hardware, we found a KNL node to be roughly equiv-

alent to a single socket of the dual-Xeon node. This is worse than

our experience with other rendering methods, and likely caused by

the code- and data-divergent nature of our reconstruction kernels’

SPMD implementation.

A full exploration of OSPRay’s distributed rendering perfor-

mance is out of the scope of the paper; however, we perform a

preliminary scaling benchmark with the LandingGear on up to 32

nodes of Stampede 2. Rendering performance started at 2.36 FPS

with 2 nodes (with one node used for display); 4.39 FPS with 3

nodes; 16.79 FPS with 17 nodes; and 21.89 FPS with 32 nodes.

6.3 Comparison to Other Approaches.
Overall, our AMR rendering system shows competitive perfor-

mance, ranging anywhere from 2–50MRays/s on a dual-Xeon work-

station, depending on data set, reconstruction strategy and chosen

level(s). Previous mixed-resolution single-GPU approaches [Beyer

et al. 2008; Ljung et al. 2006] suggested interactive performance

(15 MRays/sec and above for the method of Beyer et al. [Beyer

et al. 2008] on an NVIDIA 280 GTX), but with the limitations that

they generally interpolated only between two levels per sample,

and involved generally smaller data. The more recent single-pass

GPU approach of Kahler and Abel [Kähler and Abel 2013] reported

frame rates of 0.5–4 MRays/s, using a variety of strategies. The

performance achieved by Leaf et al. [Leaf et al. 2013] on a GPU

cluster varies with the type of dataset; their strong scaling results

suggest a render time of 2 MRays/s (0.5 fps for a 4 MP frame buffer)

on 128 GPUs, with a constant sample rate of 8 samples per voxel.

7 CONCLUSION AND FUTUREWORK
We have presented a framework for efficient CPU-based volume

rendering of Berger-Colella AMR data. We achieve consistently

interactive performance for gigascale AMR data sets, even using the

costliest reconstruction strategies (basis, blend) across all levels. Our
approach is competitive with similar approaches on single GPUs,

and evenGPU clusters, while scaling onCPU clusters. As anOSPRay

module with a standalone integration in ParaView, our system could

be easily adopted for production use. AMR continues to be vital in

large-scale simulations, and this method for Berger-Colella block-

structured data can be applied to other multiresolution rectilinear

data (e.g., octrees).

Though our framework already achieves both good image quality

and interactive performance, some work remains to be done. The

hierarchical nature of the input data, and our use of the kd-tree,

suggests space skipping could be tailored to the AMR heirarchy

for better performance and quality. Extending this work to direct

ray-isosurface intersection would also be desirable [Wald et al.

2005]. Data-distributed AMR is another extension worth exploring

for time series. Finally, performance could likely be improved by

manually coded, low-level reconstruction kernels written in SIMD

wrappers, as opposed to the current SPMD code in ISPC.

SA ’17 Symposium on Visualization, November 27-30, 2017, Bangkok, Thailand Ingo Wald, Carson Brownlee, Will Usher, and Aaron Knoll

ACKNOWLEDGMENTS
Patrick Moran from NASA Ames graciously offered use of the

Landing gear dataset. We would like to thank Juha Jaykka and Paul

Shellard from the Stephen Hawking Centre for Theoretical Cos-

mology for use of their cosmos AMR dataset. David Trebotich and

Gunther Weber from Lawrence Berkeley NL provided the sphere

flow dataset.

REFERENCES
Marsha J Berger and Phillip Colella. Local adaptive mesh refinement for shock hydro-

dynamics. Journal of computational Physics 82, 1 (1989), 64–84.
Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial

differential equations. Journal of computational Physics 53, 3 (1984).
Johanna Beyer, Markus Hadwiger, TorstenMöller, and Laura Fritz. 2008. Smooth mixed-

resolution GPU volume rendering. In Proceedings of the Fifth Eurographics/IEEE
VGTC conference on Point-Based Graphics. 163–170.

Katy Clough, Pau Figueras, Hal Finkel, Markus Kunesch, Eugene A. Lim, and Saran

Tunyasuvunakool. Numerical Relativity with Adaptive Mesh Refinement. Classical
and Quantum Gravity 32, 24 (2015).

P Colella, DTGraves, TJ Ligocki, DFMartin, DModiano, DB Serafini, and BVan Straalen.

2000. Chombo software package for AMR applications-design document. (2000).

Richard Franke and Greg Nielson. Smooth interpolation of large sets of scattered data.

Numerical Methods in Engineering 15 (1980). Issue 11.

Luke J Gosink, John C Anderson, E Wes Bethel, and Kenneth I Joy. Query-driven

visualization of time-varying adaptive mesh refinement data. IEEE transactions on
visualization and computer graphics 14, 6 (2008), 1715–1722.

Ralf Kähler and Tom Abel. 2013. Single-pass GPU-raycasting for structured adaptive

mesh refinement data. In IS&T/SPIE Electronic Imaging. 865408–865408.
Ralf Kähler and Hans-Christian Hege. Texture-based volume rendering of adaptive

mesh refinement data. The Visual Computer 18, 8 (2002), 481–492.
Ralf Kähler, John Wise, Tom Abel, and Hans-Christian Hege. 2006. GPU-assisted

raycasting for cosmological adaptive mesh refinement simulations.. In Volume
Graphics. 103–110.

Cetin C Kiris, Michael F Barad, Jeffrey A Housman, Emre Sozer, Christoph Brehm,

and Shayan Moini-Yekta. The LAVA Computational Fluid Dynamics Solver. 52nd
Aerospace Sciences Meeting, AIAA SciTech Forum 70 (2014).

Nick Leaf, Venkatram Vishwanath, Joseph Insley, Mark Hereld, Michael E Papka, and

Kwan-Liu Ma. 2013. Efficient parallel volume rendering of large-scale adaptive

mesh refinement data. In 2013 IEEE Symposium on Large-Scale Data Analysis and
Visualization. 35–42.

Myoungkyu Lee, Nicholas Malaya, and Robert D. Moser. 2013. Petascale Direct Numer-

ical Simulation of Turbulent Channel Flow on Up to 786K Cores. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis. Article 61.

Patric Ljung, Claes Lundström, and Anders Ynnerman. Multiresolution interblock

interpolation in direct volume rendering. (2006), 259–266.

Kwan-Liu Ma. 1999. Parallel rendering of 3D AMR data on the SGI/Cray T3E. In The
7th Symposium on the Frontiers of Massively Parallel Computation. 138–145.

Kwan-Liu Ma and ThomasW Crockett. 1997. A scalable parallel cell-projection volume

rendering algorithm for three-dimensional unstructured data. In Proceedings of the
IEEE symposium on Parallel rendering.

Stéphane Marchesin and Guillaume Colin De Verdiere. High-quality, semi-analytical

volume rendering for AMR data. IEEE Transactions on Visualization and Computer
Graphics 15, 6 (2009).

Nelson Max. 1993. Sorting for polyhedron composition. In Focus on Scientific Visual-
ization. 259–268.

Patrick Moran and David Ellsworth. Visualization of AMR data with multi-level dual-

mesh interpolation. IEEE transactions on visualization and computer graphics 17, 12
(2011), 1862–1871.

Brian W O’shea, Greg Bryan, James Bordner, Michael L Norman, Tom Abel, Robert

Harkness, and Alexei Kritsuk. 2005. Introducing Enzo, an AMR cosmology applica-

tion. In Adaptive mesh refinement-theory and applications.
Sanghun Park, Chandrajit L. Bajaj, and Vinay Siddavanahalli. 2002. Case Study:

Interactive Rendering of Adaptive Mesh Refinement Data. In Proceedings of the
Conference on Visualization ’02 (VIS ’02). IEEE Computer Society, Washington, DC,

USA, 521–524. http://dl.acm.org/citation.cfm?id=602099.602186

David Trebotich and Daniel Graves. An adaptive finite volume method for the in-

compressible Navier–Stokes equations in complex geometries. Communications in
Applied Mathematics and Computational Science 10, 1 (2015), 43–82.

Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek, and Hans-Peter Sei-

del. Faster Isosurface Ray Tracing using Implicit KD-Trees. IEEE Transactions on
Visualization and Computer Graphics 11, 5 (2005).

I Wald, GP Johnson, J Amstutz, C Brownlee, A Knoll, J Jeffers, J Günther, and P

Navratil. OSPRay-A CPU Ray Tracing Framework for Scientific Visualization. IEEE

Transactions on Visualization and Computer Graphics 23, 1 (2017).
Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive Ren-

dering with Coherent Ray Tracing. Computer Graphics Forum 20, 3 (2001), 153–164.

(Proceedings of Eurographics 2001).

Gunther H Weber, Hank Childs, and Jeremy S Meredith. 2012. Efficient parallel

extraction of crack-free isosurfaces from adaptive mesh refinement (AMR) data. In

2012 IEEE Symposium on Large Data Analysis and Visualization.
Gunther H Weber, Oliver Kreylos, Terry J Ligocki, John M Shalf, Hans Hagen, Bernd

Hamann, and Kenneth I Joy. 2003. Extraction of crack-free isosurfaces from adap-

tive mesh refinement data. In Hierarchical and Geometrical Methods in Scientific
Visualization.

http://dl.acm.org/citation.cfm?id=602099.602186

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Berger-Colella AMR Data
	3.2 Structure of AMR Data

	4 Reconstruction Strategies
	4.1 Finest-Level Interpolation
	4.2 Current-Sample Leaf-Level Interpolation
	4.3 Blending Between Levels
	4.4 Reconstruction via Basis Functions

	5 Implementation
	5.1 AMR KD-Tree and Cell Location
	5.2 OSPRay Integration
	5.3 Fast Cell/Dual-Cell Queries
	5.4 VTK and ParaView

	6 Results
	6.1 Rendering Quality
	6.2 Performance Evaluation
	6.3 Comparison to Other Approaches.

	7 Conclusion and Future Work
	Acknowledgments
	References

