
Improving Uintah’s Scalability

Through the Use of Portable

Kokkos-Based Data Parallel TasksKokkos-Based Data Parallel Tasks

John Holmen1, Alan Humphrey1, Daniel Sunderland2, Martin Berzins1

University of Utah1

Sandia National Laboratories2

Uintah Architecture
ARCHES DSL: NEBOUQ DRIVERS

• Open source software

• Worldwide distribution

• Broad user base

• Applications code programming
model

• Physics routines unaware of

communications

• Automatically generated abstract

Simulation
Controller

Scheduler

Load
Balancer

Runtime System

PIDX

VisIT

CPUsGPUs Xeon Phis

Task
Data

Warehouse

Hypre Linear Solver

• Automatically generated abstract

C++ task graph

• Adaptive execution of tasks by the

runtime system

• Asynchronous out-of-order

execution,

• work stealing,

• overlapping of communication

& computation

Uintah’s Heterogeneous Runtime System

• MPI+X schedulers support:

• MPI + PThreads + CUDA

• MPI + Kokkos

• Shared memory model on-
nodenode

• 1 MPI process per node

Exascale Target Problem
DOE NNSA PSAAP II Center

• Modeling an Alstom Power 1000MWe ultra,

supercritical clean coal boiler at scale with

Uintah

• Supply power for 1M people

• Targeted 1mm grid resolution = 9 x 1012 cells

50-92 meters

• Targeted 1mm grid resolution = 9 x 1012 cells

• Significantly larger than largest problems

solved today

Radiation Overview
• Solving energy and radiative heat transfer equations

simultaneously

=
∂

∂

t

T
Diffusion – Convection + Source/Sinks q⋅∇

• Need to compute the net radiative source term

• The net radiative source term consists of two terms, one of which
requires integration of incoming intensity about a sphere

• RMCRT approximates the second term using Monte-Carlo
methods

∑∫
=

⇒Ω

N

ray

rayin
N

IdI
14

4π

π

Reverse Monte Carlo Ray Tracing
• Randomly cast rays to compute the

incoming intensity absorbed by a given cell

• Rays are traced away from the origin cell

to compute incoming intensity backwards
to the origin cell

• When marching rays, each cell entered
adds its contribution to the incoming

intensity absorbed by the origin cell

• The further a ray is traced, the smaller the

contribution becomes
Back path of ray from S to emitter

E, 9-cell structured mesh patch

Parallel Reverse Monte Carlo Ray Tracing

• Lends itself to scalable parallelism

• Rays are mutually exclusive

• Multiple rays can be traced simultaneously at any

given cell and/or timestep

• Backwards approach eliminates the need to track

rays that never reach an origin cell

Node 1

Global
Mesh

Local
Mesh

rays that never reach an origin cell

• Parallelize by splitting the computational domain

across compute nodes

• Each node is responsible for tracing rays from within

each origin cell that it owns across the entire domain

• Nodes must communicate and store geometry

information and physics properties for the entire

domain

Node 2

Node 3

Node 4

Multi-Level AMR RMCRT
• Global approach involves too much

communication

• Use a multilevel representation of

computational domain

• Reduces computational cost,
memory usage, and MPI message

Global
Mesh

Localmemory usage, and MPI message

volume

• Define Region of Interest (ROI), which is

surrounded by successively coarser grids

• As rays travel away from ROI, the stride
taken between cells becomes larger

Local
Mesh

Coarse
Mesh

Fine
Mesh

Kokkos Performance Portability Library

• C++ library allowing developers to write portable, thread-scalable code optimized

for CPU-, GPU-, and MIC-based architectures

• Kokkos provides abstractions to control:

• how/where kernels are executed,

9

• where data is allocated, and

• how data is mapped to memory

• While Kokkos enables performance portability, the user is responsible for writing

performant kernels

• Source Available at: https://github.com/kokkos/kokkos

Uintah Programing Model for Stencil

Timestep

Example Stencil Task
Unew = Uold +

dt*F(Uold,Uhalo)

N
e
tw

o
rk

Old Data

WarehouseGET Uold Uhalo

MPI

New Data

WarehousePUT Unew

Halo Sends

Halo Receives

Uhalo

WarehousePUT Unew

Use Kokkos abstraction layer that maps loops

onto machine specific data layouts and has
appropriate memory abstractions

Kokkos Unmanaged Views

Memory Structure
Cache, and Vectorization Friendly

Kokkos-Based RMCRT

• CPU-, GPU-, and MIC-based RMCRT efforts have resulted in several different

implementations

• Introduced RMCRT:Kokkos to consolidate implementations

• Encapsulated “hot spots” within a Kokkos functor

11

• Encapsulated “hot spots” within a Kokkos functor

• This new implementation:

• Required < 100 lines of new code

• Replaces a naïve cell iterator with a Kokkos parallel loop, enabling the

selection of optimal iteration schemes via Kokkos

• Enables multi-threaded task execution via Kokkos back-ends

Node-Level Parallelism Within Uintah

• For CPU and MIC architectures, Uintah features parallel execution of serial tasks

• 1 running task per thread

• Requires at least 1 patch per thread

• Breaks down as patches are subdivided to support more threads/cores

• Current Kokkos-based scheduler features serial execution of data parallel tasks

12

• Current Kokkos-based scheduler features serial execution of data parallel tasks

• 1 running task per MPI process

• Requires at least 1 patch per MPI process

• Eliminates the need to create a new patch to run with another thread

• Next step is a Kokkos-based scheduler w/ parallel execution of data parallel tasks

• We already do this for GPU but not for CPU and MIC

13

14

15

Medium

Large

16

Medium

• Data parallel tasks for CPU- and MIC-based architectures allow Uintah to support

larger thread/core counts per node

• Data parallel tasks offer the potential to improve microarchitecture use (e.g. per-

patch work can be computed cooperatively by multiple threads sharing a cache)

• Use of Kokkos allows data parallel tasks to be introduced in a portable manner

Summary

• Use of Kokkos allows data parallel tasks to be introduced in a portable manner

• Helps avoid code divergence and architecture-specific implementations

• Reduces the gap between development time and our ability to run on newly

introduced machines

• Titan comparisons offer encouragement as we prepare for the Aurora Early Science
Program

Questions?
Support provided by the Department of Energy, National Nuclear Security

Administration, under Award Number(s) DE-NA0002375.

Computing time provided by the NSF Extreme Science and Engineering Discovery
Environment (XSEDE) program

Texas Advanced Computing Center resources used under Award Number(s)

MCA08X004 - ``Resilience and Scalability of the Uintah Software''

Thanks to TACC and those involved with the CCMSC and Uintah past and present

Uintah Download: http://www.uintah.utah.edu

