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Uintah Architecture 
ARCHES DSL: NEBOUQ DRIVERS

• Open source software

• Worldwide distribution

• Broad user base

• Applications code programming 
model

• Physics routines unaware of 

communications

• Automatically generated abstract 
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• Automatically generated abstract 

C++ task graph

• Adaptive execution of tasks by the 

runtime system

• Asynchronous out-of-order 

execution,

• work stealing,

• overlapping of communication 

& computation



Uintah’s Heterogeneous Runtime System

• MPI+X schedulers support:

• MPI + PThreads + CUDA

• MPI + Kokkos

• Shared memory model on-
nodenode

• 1 MPI process per node



Exascale Target Problem
DOE NNSA PSAAP II Center

• Modeling an Alstom Power 1000MWe ultra, 

supercritical clean coal boiler at scale with 

Uintah

• Supply power for 1M people

• Targeted 1mm grid resolution = 9 x 1012 cells

50-92 meters

• Targeted 1mm grid resolution = 9 x 1012 cells

• Significantly larger than largest problems 

solved today



Radiation Overview
• Solving energy and radiative heat transfer equations 

simultaneously
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Diffusion – Convection + Source/Sinks q⋅∇ 

• Need to compute the net radiative source term

• The net radiative source term consists of two terms, one of which 
requires integration of incoming intensity about a sphere

• RMCRT approximates the second term using Monte-Carlo 
methods
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Reverse Monte Carlo Ray Tracing
• Randomly cast rays to compute the 

incoming intensity absorbed by a given cell

• Rays are traced away from the origin cell 

to compute incoming intensity backwards 
to the origin cell

• When marching rays, each cell entered 
adds its contribution to the incoming 

intensity absorbed by the origin cell

• The further a ray is traced, the smaller the 

contribution becomes
Back path of ray from S to emitter 

E, 9-cell structured mesh patch



Parallel Reverse Monte Carlo Ray Tracing

• Lends itself to scalable parallelism

• Rays are mutually exclusive

• Multiple rays can be traced simultaneously at any 

given cell and/or timestep

• Backwards approach eliminates the need to track 

rays that never reach an origin cell

Node 1

Global
Mesh

Local
Mesh

rays that never reach an origin cell

• Parallelize by splitting the computational domain 

across compute nodes

• Each node is responsible for tracing rays from within 

each origin cell that it owns across the entire domain

• Nodes must communicate and store geometry 

information and physics properties for the entire 

domain
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Node 3

Node 4



Multi-Level AMR RMCRT
• Global approach involves too much 

communication

• Use a multilevel representation of 

computational domain 

• Reduces computational cost, 
memory usage, and MPI message 

Global
Mesh

Localmemory usage, and MPI message 

volume

• Define Region of Interest (ROI), which is 

surrounded by successively coarser grids

• As rays travel away from ROI, the stride 
taken between cells becomes larger

Local
Mesh
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Mesh
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Kokkos Performance Portability Library

• C++ library allowing developers to write portable, thread-scalable code optimized 

for CPU-, GPU-, and MIC-based architectures

• Kokkos provides abstractions to control:

• how/where kernels are executed,
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• where data is allocated, and

• how data is mapped to memory

• While Kokkos enables performance portability, the user is responsible for writing 

performant kernels

• Source Available at: https://github.com/kokkos/kokkos



Uintah Programing Model for Stencil  

Timestep

Example Stencil Task
Unew = Uold + 

dt*F(Uold,Uhalo)
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Halo Sends
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Uhalo

WarehousePUT  Unew

Use Kokkos abstraction layer that maps loops 

onto machine specific data layouts and has 
appropriate memory abstractions 

Kokkos  Unmanaged Views

Memory Structure
Cache, and Vectorization Friendly



Kokkos-Based RMCRT

• CPU-, GPU-, and MIC-based RMCRT efforts have resulted in several different 

implementations

• Introduced RMCRT:Kokkos to consolidate implementations

• Encapsulated “hot spots” within a Kokkos functor
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• Encapsulated “hot spots” within a Kokkos functor

• This new implementation:

• Required < 100 lines of new code

• Replaces a naïve cell iterator with a Kokkos parallel loop, enabling the 

selection of optimal iteration schemes via Kokkos

• Enables multi-threaded task execution via Kokkos back-ends



Node-Level Parallelism Within Uintah

• For CPU and MIC architectures, Uintah features parallel execution of serial tasks

• 1 running task per thread

• Requires at least 1 patch per thread

• Breaks down as patches are subdivided to support more threads/cores

• Current Kokkos-based scheduler features serial execution of data parallel tasks
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• Current Kokkos-based scheduler features serial execution of data parallel tasks

• 1 running task per MPI process

• Requires at least 1 patch per MPI process

• Eliminates the need to create a new patch to run with another thread

• Next step is a Kokkos-based scheduler w/ parallel execution of data parallel tasks

• We already do this for GPU but not for CPU and MIC
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• Data parallel tasks for CPU- and MIC-based architectures allow Uintah to support 

larger thread/core counts per node

• Data parallel tasks offer the potential to improve microarchitecture use (e.g. per-

patch work can be computed cooperatively by multiple threads sharing a cache)

• Use of Kokkos allows data parallel tasks to be introduced in a portable manner

Summary

• Use of Kokkos allows data parallel tasks to be introduced in a portable manner

• Helps avoid code divergence and architecture-specific implementations

• Reduces the gap between development time and our ability to run on newly 

introduced machines

• Titan comparisons offer encouragement as we prepare for the Aurora Early Science 
Program
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Uintah Download: http://www.uintah.utah.edu


