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Abstract. Two different approaches to the prediction problem are compared employing a realistic example—
combustion of natural gas—with 102 uncertain parameters and 76 quantities of interests. One
approach, termed bound-to-bound data collaboration (abbreviated to B2B), deploys semidefinite
programming algorithms where the initial bounds on unknowns are combined with initial bounds of
experimental data to produce new uncertainty bounds for the unknowns that are consistent with the
data and, finally, deterministic uncertainty bounds for prediction in new settings. The other approach
is statistical and Bayesian, referred to as BCP (for Bayesian calibration and prediction). It places
prior distributions on the unknown parameters and on the parameters of the measurement error
distributions and produces posterior distributions for model parameters and posterior distributions
for model predictions in new settings. The predictions from the two approaches are consistent; a
very large degree of overlap exists between B2B bounds and the support of the BCP predictive
distribution. Interpretation and comparison of the results is closely connected with assumptions
made about the model and experimental data and how they are used in both settings. The principal
conclusion is that use of both methods protects against possible violations of assumptions in the
BCP approach and conservative specifications and predictions using B2B.
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realization, and numerical implementation, accounting for uncertain/unknown model param-
eters and experimental calibration data. How to use the experimental data and the numerical
realization to enable prediction of new settings and estimate unknowns has garnered much
attention in recent years [4], with an important spotlight on coping with model inadequacy.
Yet even when a physical model and its numerical realization is, for all purposes, an accu-
rate representation of the phenomenon, the methods and capacity for utilizing experimental
data for calibration and prediction has not yet been standardized. Such a setting is found,
for instance, in combustion chemistry [12], where the physical model is a complex network of
many chemical species related through hundreds and thousands of chemical reactions involving
many hundreds, perhaps even thousands of unknown model parameters and mathematically
modeled by a large system of ordinary differential equations (ODEs). Moreover, the limited
experimental data are heterogeneous (different experimental settings, different laboratories)
with sketchy assessments of measurement error.

Two different approaches to the prediction problem, using methane combustion as an
example, will be discussed. One approach, developed in a series of studies [14, 15, 8, 27, 25, 26],
is termed bound-to-bound data collaboration (B2B). This approach addresses uncertainty
quantification (UQ) of a system such as methane combustion by reducing dimension (the
number of unknown parameters), approximating ODE solutions through design of computer
experiments, and specifying initial bounds on the unknown parameters and on uncertainties
(errors) in measurement. Then, by deploying semidefinite programming algorithms [3], the
initial bounds on unknowns are combined with the initial bound of experimental data to
produce new uncertainty bounds for the unknowns that are consistent with the data and,
finally, deterministic uncertainty bounds for prediction in new settings. Details of the B2B
process are given in section 4.4.

The other approach is statistical and Bayesian [17, 23], referred hereafter as BCP (for
Bayesian calibration and prediction), as initiated in the statistical literature in [20] and im-
plemented in [2]. The BCP approach places prior distributions on unknown parameters, in our
case the calibration parameters and the parameters of the measurement error distributions,
and produces posterior distributions for the parameters and posterior distributions for model
predictions in new settings. Details of BCP are given in section 4.5.

Comparison of the two approaches, B2B and BCP, in the context of the methane combus-
tion example is the content of this paper. We find that predictions from the two approaches
are consistent: the B2B predicted bounds and the BCP predictive distribution overlap greatly.
Interpretation and comparison of the results is closely connected with assumptions made about
the model and experimental data and how they are used in both settings. The principal con-
clusion is that use of both methods protects against possible violations of assumptions in the
BCP approach and conservative specifications and predictions using B2B.

Much of what is done here was done initially on a smaller system of hydrogen combus-
tion [33] but with similar conclusions; the methane problem [29] is more interesting because
it is of larger dimension. Section 3 describes the methane combustion dataset; section 4 gives
the details of the two approaches, B2B and BCP; results are reported in section 5; and some
discussion and comments are given in section 6. We begin, however, with an oversimplified
(“toy”) example to familiarize the reader with some of the concepts, definitions, and our
outlook on the comparison.D
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2. A “toy” example. We consider a set of two consecutive irreversible chemical reactions,

(2.1) A
k1−→ B

k2−→ C,

where an initial compound A is converted to compound B, and the latter is converted into
compound C. The mathematical model of this system takes the form of a set of first-order
ODEs,

(2.2)

da

dt
= −k1a,

db

dt
= k1a− k2b,

dc

dt
= k2b,

where a, b, and c are the concentrations of compounds A, B, and C, respectively, at time t; k1
and k2 are the rate constants of the corresponding reactions, and t is the reaction time. The
solution of (2.2) (for k1 6= k2) with the initial conditions a = 1, b = 0, c = 0 at t = 0 is

(2.3)

a = e−k1t,

b =
k1

k2 − k1

(
a− e−k2t

)
,

c = 1− a− b.

For the example, we assume the nominal values of the rate constants to be k1 = 2 and k2 = 1.
Figure 1 shows the computed concentrations for this model at these values.

For the UQ analysis, we further assume that the rate constants are only known to within
a factor of two up and down from the nominal values for each k; i.e., k1 is assumed to have
values within the interval [1, 4] and k2 within [0.5, 2]. In B2B, this information is referred to
as prior knowledge and denoted by H; it is shown as the gray rectangle in the top left panel
of Figure 2. We also assume two measured properties (quantities of interest, QoI):

• The peak value of b: q1 = bmax = k1
k2
e−k1tmax ; it is illustrated by a red star in Figure 1.

For the purpose of this toy example, the uncertainty interval of q1 is taken to be [0.45,
0.55] (10% uncertainty).
• The time of peak of b: q2 = tmax = 1

k2−k1 ln k2
k1

. For the purpose of this toy example,
the uncertainty interval of q2 is taken to be [0.55, 0.83] (20% uncertainty).

Selecting from the prior-knowledge set of (k1,k2) value pairs only those that reproduce the
q1 and q2 values within their respective uncertainty intervals results in a smaller set, which
we call the feasible set and denote by F ; it is shown as the red area in the top left panel of
Figure 2. The B2B methodology establishes the feasible set implicitly, as will be discussed in
section 4.4.

The bottom right panel of Figure 2 redraws the H and F regions, but now with H
occupying the entire box. The F region is covered with blue dots—these points represent
a sample from the posterior distribution of the parameters obtained via a stochastic process,
BCP (described in section 4.5), assuming uniform prior distributions on both k’s and q’s. TheD

ow
nl

oa
de

d 
07

/1
5/

17
 to

 1
28

.3
2.

16
4.

26
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

878 FRENKLACH, PACKARD, GARCIA-DONATO, PAULO, SACKS

0 0.5 1 1.5 2

time

0

0.2

0.4

0.6

0.8

1

co
nc

en
tr

at
io

n
a c

b

Figure 1. Concentrations of A, B, and C of the toy model computed with k1 = 2 and k2 = 1.

top right and bottom left panels of Figure 2 present the computed posterior BCP distributions
along with the predicted B2B intervals for k1 and k2. We will use this latter format of
comparison throughout the manuscript.

The use of the uniform priors for both k’s and q’s in the BCP analysis are made in
order to mimic the B2B setup, and hence the agreement between the two approaches seen in
Figure 2 is not surprising. However, we draw attention to the fact that B2B and BCP are
different formulations. We are not trying to get them to be the same but rather to see what
conclusions they reach by “harmonizing” them and embracing their differences. In addition,
we repeated the calculations for the toy example, but now assuming that only k’s have the
uniform distributions, while the q’s are Gaussian. The results are reported in Figure 3. We
can see that the BCP sampling is now slightly extended beyond the feasible-set region of B2B,
as expected. Yet the BCP posteriors, especially the marginals, are not affected much by the
choice of priors.

The established feasible set, F , “summarizes” the uncertainty of the model-data system:
it is a set of all possible (k1, k2) pairs that assures that both model parameters and model
predictions of selected-for-analysis experimental observations are each within their respective
uncertainty bounds. We can now explore what this information implies for prediction of an
unmeasured property. Continuing with the toy example, we select an unmeasured QoI: the
ratio of c/a at the time when b reaches the maximum, tmax. The results are presented in
Figure 4. The left panel reports the computed (c/a)tmax

values over the H domain, displayed
as a blue surface. Those value corresponding to (k1,k2) pairs of F are shown as a cyan patch of
the surface. Extreme points of this patch determine the B2B predicted interval for (c/a)tmax

;
this interval is shown as the red bar in the right panel of Figure 4, where it is compared toD
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Figure 2. Analysis of the toy system. Top left panel: prior-knowledge, H, and feasible set, F ; bottom
right panel: same H and F with BCP-sampled points marked as blue dots; top right and bottom left panels:
posterior BCP distributions (green histograms) and predicted B2B intervals (red bars) for respective k’s. The
BCP calculations are performed assuming uniform prior distributions on both k’s and q’s, without bias term
included.

the BCP posterior distribution.
We thus can see that in this simple example, the B2B predicted intervals and the BCP

posteriors are consistent with each other (Figures 3 and 4). We remind the reader that this
toy example is used merely for introductory purposes: a two-parameter problem is easy to
visualize. We now turn to our main analysis platform—a realistic multiparameter, multi-QoI
system.

3. Methane-oxidation dataset. Our main demonstration platform here is the kinetics
of a complex chemical reaction system common in the fields of combustion, atmosphericD
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Figure 3. Analysis of the toy system. Top right and bottom panels are similar to those in Figure 2 but with
BCP calculations performed assuming uniform prior distributions on k’s and Gaussian priors on q’s. The top
left panel compares the BCP posterior distributions computed for k1 assuming uniform priors on both k’s and
q’s (blue) with those assuming uniform priors on k’s and the Gaussian priors on q’s (green); again, no bias
term is included.

phenomena, astrophysics, material synthesis, and system biology. The specific dataset we
employ here is that of natural-gas combustion [29]. The dataset consists of 76 QoIs, which are
selected features from different experiments comprising species concentrations and ignition
delays determined in shock tubes, peaks in species profiles and flame velocities determined
in flames, shifts in observed species peak positions resulting from changing an initial mixture
composition, and the like (see Appendix B). Some of these QoIs are single measurements,
while others are averages of a group or series of measurements.

For the purpose of analysis, each QoI value must be accompanied by an assessed uncer-
tainty. Regretfully, in the field of combustion, as in many fields, the reporting of experimentalD
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Figure 4. Analysis of the toy system. Left panel: computed values of (c/a)tmax
over the domain of H (blue

surface) and over the domain of F (cyan patch); right panel: posterior BCP distribution (green histogram) and
predicted B2B interval (red bar) for (c/a)tmax

. The BCP calculations were performed assuming uniform priors
on k’s and Gaussian priors on q’s, without a bias term.

(and theoretical) uncertainties is typically insufficient and often nonexistent. Some experi-
mental studies report uncertainties for principal properties such as reaction temperature and
then propagate these uncertainties to derived properties of interest, for example, species con-
centrations. But the details of the “error propagation” are absent. Most reports do not assess
experimental errors, except for plotting the observed scatter. Moreover, combustion exper-
iments cannot be exactly replicated: a shock-tube or flame experiment occurs at differing
initial conditions, some of which cannot be controlled by the experimenter. For example, in
a shock-tube experiment the reaction temperature created by the propagating shock front is
affected by details of the diaphragm rupture, essentially an uncontrollable phenomenon.

The uncertainties in the measured values of the 76 methane-combustion QoIs were de-
veloped over years by a team of experts [29, 34]; these expert-assessed uncertainties must be
taken as “tentatively entertained”—it is plausible they can be reassessed with different values.

There is an underlying physical model that is presumed to accurately reproduce each of
the 76 experimental QoIs. The model is a complex network of 53 chemical species related
to each other through molecular transformations, described by 325 chemical reactions. The
mathematical representation of the physical model takes the form of an ODE system, similar
to (2.2), but containing species concentration products that makes the system highly nonlinear
without closed-form solution. The model depends on uncertain parameters, such as reaction
rate constants and species enthalpies of formation. Prior uncertainty assessments of the model
parameters are taken from [29, 34]. The underlying physical model is believed to be accurate,
so there is no a priori model uncertainty.

3.1. Dimension reduction: Surrogate modeling. The methane-combustion dataset [29]
was originally built for the purpose of developing an optimized combustion model, namely,D
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determining a set of parameter values that best fits the experimental QoI values. To speed up
model optimization, the numerical solutions for individual QoIs were parameterized by fitting
surrogate models in active variables, the latter identified by performing screening sensitivity
analysis on the ODE model [13]. Each surrogate model was thus developed in its own set of 8
to 12 active variables, covering their respective ranges of uncertainty and holding the rest of
the parameters at their nominal values. These parameter sets differ from QoI to QoI. Their
union forms a set of 102 active variables.

Quadratic polynomials were found to be sufficiently accurate, all being within a few percent
from the respective ODE results. Each quadratic polynomial expresses log10 of the QoI in
terms of log10 of its set of active variables (mostly preexponential factors of the Arrhenius
reaction rate expressions, but also species enthalpies of formation). Further details can be
found in [12, 15, 29, 34]. The QoI surrogate models along with the model-parameter data are
available as an HDF5 file in the supplementary materials (gri mech 30.h5 [local/web 871KB]).

Other, more elaborate surrogate models can be and have been used as approximations [1,
2, 10, 5, 21]. In the present study, we take the quadratics as “truth,” which simplifies com-
putations without compromising the implications.

4. Methods.

4.1. General setting. Both approaches, BCP and B2B, share a common underpinning:
• an underlying physical process and associated numerical model with parametric de-

pendence on unknown/uncertain physical parameters;
• prior assumptions regarding uncertainty in the true parameters;
• a collection of experimental observations with attached uncertainties;
• numerical models of each experimental observation that join the underlying physical

process model with accompanying physics models to characterize measured outcomes
of the experiment. (The accompanying physical models may introduce additional
unknown parameters; they can be accommodated but are fixed for this study.)

The information in the four bullets constitute a dataset ; the methane example described in
section 3 is such an instance.

4.2. Notation. The data associated with the 76 experimental QoIs is indexed by e, taking
values from 1 to m = 76. The true outcome for a QoI is Ye, and its measured value is ye.
The active variables are denoted as x = (x1, . . . , x102). The treatment of measurement and
parameter uncertainties is specific to each method and described below in sections 4.4 and 4.5.
For QoI e, Me(x) is the output of the surrogate model when x is input.

4.3. Preamble to mathematical treatment. Although the treatments have different math-
ematical forms, each captures the experimental reality. Each approach combines prior in-
formation regarding the unknown parameters with the information provided by linking the
experimental observations to their corresponding models, the latter denoted by Me(x). The
result is an enriched understanding of the unknown parameters and prediction of unmeasured
QoIs. One clear difference between the two methods is the mathematical form of the prior and
posterior descriptions, i.e., intervals to intervals in B2B as compared to prior and posterior
probability distributions in BCP. The details of these assumptions are described next, for
each approach.D
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4.4. Bound-to-bound data collaboration. Bound-to-bound data collaboration (B2B) is
an optimization-based framework for combining models and experimental data from multiple
sources to explore their collective information content. The methodology tests consistency
among data and models [8], explores sources of inconsistency [8], discriminates among differing
models [7], makes model interval predictions [14, 15, 26, 6, 31], and analyzes sensitivity of
uncertainty propagation [25]. Applications of the approach include combustion science [15,
8, 25, 12, 31] and engineering [24], atmospheric chemistry [28], system biology [7, 9, 32], and
quantum chemistry [6].

In B2B, the prior information on x is expert-assessed uncertainties of the form xi,min ≤
xi ≤ xi,max. This defines a prior-knowledge hypercube H, normalized to [−1, 1] for each x.
The reported experimental data for experiment e (experimentally observed QoI values) consist
of two uncertainty bounds: Le and Ue. They specify a range, not merely a single value, of the
measured ye.

The computational models (which are parameterized by x) must produce outputs that
are consistent with the experimentally observed bounds in the experimental reports. Hence
additional constraints that the true parameters must satisfy are

(4.1) Le ≤Me(x) ≤ Ue for e = 1, . . . ,m.

The subset of H satisfying (4.1) is called the feasible set F of parameters,

(4.2) F := {x ∈ H : Le ≤Me(x) ≤ Ue ∀e} .

This is simply all parameter values that jointly satisfy all of the prior information and are
consistent with all experiment prediction models and actual observed outcomes. A parameter
value that is not in F is at odds with at least one of these constraints.

4.4.1. B2B as constrained optimization. The first “bound” in the “bound-to-bound”
nomenclature is associated with

• the form of the prior information, namely, that the true parameters must be both
contained in the parameter hypercube H (which is in the form of bounds on the
components); and
• the true parameters must result in model predictions of all dataset experiments that

are within the measurement bounds declared by the experimenters, namely, Le ≤
Me(x) ≤ Ue for all e.

Together, these are the “bounds” that define F . B2B invokes constrained optimization over
the feasible set F ,

(4.3)

[
min
x∈F

f(x), max
x∈F

f(x)

]
,

where f is a function of interest, and the computed min and max constitute the “to-bound”
aspect of the nomenclature. In short, the bounds that describe the prior information and the
bounds on experimental observations are mapped into bounds on prediction. Two common
instances are described next.D
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4.4.2. Dataset consistency. The feasible set is a representation of the complete collabo-
rative information contained in a dataset, and questions in the B2B framework are posed as
optimization problems over the feasible set. This naturally raises the question of dataset con-
sistency: is F nonempty? To assess it numerically, a consistency measure was introduced [8]
that answers the question “What is the largest percentage of uncertainty reduction such that
there exists a feasible parameter vector?” Associated with a given dataset D, it is denoted
CD and posed as an optimization problem,

CD := max
γ,x∈H

γ subject to(4.4)

(1− γ)
Le − Ue

2
≤Me(x)− Ue + Le

2
,

Me(x)− Ue + Le
2

≤ (1− γ)
Ue − Le

2
for e = 1, . . . ,m.

In this definition, the original constraints Le ≤ Me(x) ≤ Ue are augmented with a scalar γ,
where positive values of γ imply tightening of the constraint, and negative values imply loos-
ening. The consistency measure quantifies how much the constraints can be tightened while
still ensuring the existence of a set of parameter values whose associated model predictions
match (within their respective bounds) the experimental QoIs. The dataset is consistent if
the consistency measure is nonnegative, and is inconsistent otherwise.

4.4.3. Model prediction. Consider a physical configuration (set of conditions) not exer-
cised experimentally but with a property P predicted by model MP. A natural and perhaps
the ultimate question of scientific inquiry is, “What is the range of values this model exhibits
over the domain of feasible parameter values?” In other words, what is the prediction interval
for property P that is consistent with all of the model/observation pairs in the dataset? We
refer to this as model prediction.

The B2B computation expresses this question into two optimization problems for the lower
and upper interval endpoints, LP and UP,

LP := min
x∈F

MP(x),(4.5)

UP := max
x∈F

MP(x).(4.6)

The length UP − LP quantifies the amount of uncertainty in MP’s value conditioned on the
fact that the true parameter vector is contained in the feasible set F .

As a simple example, consider MP(x) := xk, the kth component of the uncertain parameter
vector. The prior information (i.e., H) constrains this as xk,min ≤ xk ≤ xk,max, whereas the
calculations in (4.5) and (4.6) give the posterior range of xk when restricted to the feasible
set F . Geometrically, the predicted interval [Lxk , Uxk ] is the projection of high-dimensional
set F onto the kth parameter coordinate.

4.4.4. Optimization on the feasible set. The optimization problem of B2B, (4.3), in-
volves minimization and maximization of a model over the feasible set F . In Appendix A,
we briefly review some key results pertaining to constrained optimization and quantify theD
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computational importance of polynomial and, more specifically, quadratic parameter depen-
dence in the Me models. In particular, we note that semidefinite programming enables highly
efficient solutions when models Me are quadratic.

4.5. Bayesian calibration and prediction formulation. The Bayesian calibration and pre-
diction framework (BCP) is founded on a probabilistic description of the system. We adopt
the assumption made previously that the model is an adequate description of reality, Ye, and
that its experimental measure is

(4.7) ye = Ye + εe = Me(x) + be + εe,

where be is measurement bias and εe is a symmetric component of measurement error. For-
mally, this is the approach laid out in [20], except that be there is model bias (model discrep-
ancy), while here it is measurement bias. We comment later on the issue of model bias. There
are m such QoIs and therefore a set Ye, e = 1, . . . ,m, of such “realities” and accompanying
measurements and measurement errors including biases. The Me’s, as described in sections 4.2
and 4.3, are accepted as the solutions to the ODE system for the QoIs. Me depends on the
unknown model parameters x (also known as calibration parameters). We denote the vector
of bias terms by b = (b1, . . . , bm).

By specifying distributional assumptions on εe, for example, normal with variance σ2e , we
get the likelihood

(4.8) L(y | σ2,b,x) ∝
m∏
e=1

N(ye |Me(x) + be, σ
2
e) ,

where σ2 = (σ21, . . . , σ
2
m) and y = (y1, . . . , ym). This forms the basis for learning about the

unknowns b, x.
For σ2, we draw upon the B2B formulation and fix its value by choosing the individual

σ2e so that a normal distribution with mean 0 and variance σ2e puts probability 0.95 on the
interval of width (Ue − Le) centered at 0, where Le and Ue are the bounds from (4.1).

Other distributional choices for εe such as having the symmetric component of error uni-
form, or of using a truncated normal distribution, would be plausible but at some extra
computational burden. It is also plausible, as borne out in section 2, that there is little differ-
ence to be seen between uniform and matched Gaussian error. Nor is it clear what would be
appropriate distributions when the only information is given by bounds that are themselves
uncertain. But our main motivation is to see what a typical BCP approach using Gaussian
errors does vis-à-vis the typical B2B approach.

To proceed in a Bayesian fashion, one must specify a probability distribution on the
unknowns, the so-called prior distribution, which we denote by π(b,x), and then combine this
distribution with (4.8) via Bayes’ theorem to produce the posterior distribution, π(b,x | y).
(The choice of π(b,x) is problem specific; the choice for the methane problem is described
in section 5.2.) The posterior distribution summarizes all the available knowledge about
the unknowns after observing the experimental data y, combining sampling information and
prior information into a single distribution and forming the basis for statistical inference and
prediction.D
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It is clear that there is an unavoidable confounding between x and be: a change in one
of them adjusted by a change in the other can preserve the value of Ye. It is by including as
much expert information as possible in the prior on be and x that we may hope to untangle
the dependence between the bias and the calibration parameters—jointly estimating be and x
in any case will account for this additional source of uncertainty in prediction. In the context
of model bias, predictions and assessment of uncertainty are done in [2]; the same methods are
applicable whether be is measurement bias or a combination of measurement and model bias,
and we follow that approach here. In practice the implementation of this general approach
can vary from problem to problem.

4.5.1. Implementation and interpretation. The computation of the posterior distribu-
tion, π(b,x | y), is generally done by a Markov chain Monte Carlo (MCMC) algorithm [17].
We implemented this algorithm in WinBUGS [22] launched from R [30].

The MCMC applied to (4.7) and (4.8) produces a sample, {xk,bk, k = 1, . . . ,K}, from
the posterior distribution of all unknowns. To predict an outcome of a new QoI, that is,
predict YP for a new QoI and conditions, we can use the sample from the posterior of MP,

(4.9) MP(xk), k = 1, . . . ,K,

and obtain a so-termed pure-model prediction of YP as M̂P, with its mean evaluated as the
average of MP(xk). (The pure-model prediction, as described in [2], results from computing
the posterior mode or mean, x̂, of the xk and then evaluating MP at this estimated value.
This is a minor difference here.)

4.5.2. What if model bias is present? Pure-model prediction is called for in the absence
of model bias. In many applications, unlike our methane example, model bias is certain to be
present and not ignorable [18]. In such cases, if measurement bias is absent, an appropriate
predictor [2] is to use the statistical model in (4.7) to construct the so-called bias-corrected
prediction. The bias-corrected prediction is obtained from the MCMC (the prior distributions
we use are the same no matter how b is interpreted and the resulting MCMC would then be
the same), computing

(4.10) YP(xk) = MP(xk) + bP,k, k = 1, . . . ,K,

and taking the average (or median) of the YP(xk).
But how do we obtain the samples {bP,k}? Here we are forced to make assumptions—there

are no data to inform about model discrepancy at a new QoI. If, for example, model bias
for YP is similar to biases of some of the experimented-upon QoIs, then we might choose bP
as the average of those be, and the MCMC sample from the posterior would then generate a
sample for bP.

Matters become more complicated if both measurement and model bias are present. The
reason: YP(x) has no measurement error, so an average of be could result in a misleading
bP. The confounding of the two biases leads to ambiguities and affects the interpretation of
predictions (either pure-model or bias-corrected). In section 5.5 we point out the differences
that may arise if we had assumed that the bias in our methane example was due to model
imperfection.D
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5. Results and discussion.

5.1. Brief recapping. Before proceeding with the description and comparison of the re-
sults, it is pertinent to briefly revisit the commonality and differences in the present analyses:

• Both B2B and BCP use the same quadratic surrogates as models.
• Both B2B and BCP use the same ranges of model parameters. B2B relies on the

bounds only, whereas the BCP assumes that the model parameters are uniformly
distributed within those bounds.
• Both B2B and BCP rely on the same experimental data. B2B uses the experimenter-

reported ranges, whereas BCP uses normal distributions based on the experimenter-
reported observation values and uncertainties.
• BCP introduces an additive term and accompanying distribution to each model to

account for measurement bias.
The similarities and differences in this list are a template for comparing the results of the
analyses described in sections 4.4 and 4.5.

5.2. Specifying the prior for BCP. We assume that π(b,x), the prior distribution of the
unknowns, is a product of π(b) and π(x)—an independence assumption. We take π(x) to be
uniform on H.

To construct the prior on b, we grouped experiments from the same laboratory of the
same type, except for initial conditions (see Appendix B), and assumed that the biases are
the same for experiments in the same group. Additionally, we assumed that the biases were
independent across groups. A total of 44 groups were created (Table 1), and the prior on bj ,
the bias for group j, is

π(bj) =

∫ +∞

0
N(bj | 0, τ2j ) π(τj) dτj ,

where π(τj) ∝ 1/(1 + τ2j /σ̄
2
j ) with σ̄2j the average of the variances over the members of the

group. The prior on τj is thus a Cauchy distribution with location parameter zero and scale
parameter equal to σ̄j . In Bayesian language, the prior on bj is hierarchical in that it is
parameterized by τj (the hyperparameter) and τj itself has prior density (the hyperprior). We
are saying that a priori bj is normal with zero mean, but are uncertain about its standard
deviation. The probability distribution describing this uncertainty exhibits heavy tails and a
scale similar to the measurement error. This particular choice of prior for bj is similar to the
one used by [1] and has roots on priors for variance parameters in random effects models [16].
This choice of the prior is objective in that it emphasizes the role of the data in obtaining
posterior distributions and downplays the impact of the prior.

5.3. A comment on computations. Both approaches rely on dimension reduction. De-
veloping surrogate models each in its own set of active variables, which benefits B2B [13], also
benefits the MCMC in the BCP analysis. Indeed, only 8 to 12 parameters are involved in any
one of the 76 QoIs. Had we needed to use all 102 parameters for each QoI, we would have
102×102 matrices rather than 10×10 matrices. The gain in computation is a factor of about
100. However, since the group of relevant parameters that are involved in each of the QoIs
changes, the computer code was modified to optimally compute the polynomials.D
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Table 1
Grouping of the bias terms. (QoIs are from [29]; see Appendix B.)

QoI Bias QoI Bias QoI Bias

IG.1a, IG.1b b1 CH3.T4 b16 StF8 b31

IG.2 b2 CH3.StC6, CH3.StC7 b17 SNO.C11 b32

IG.6a, IG.6b b3 OH.1a, OH.1b b18 SCH.C11–C13 b33

IG.T1 b4 OH.2 b19 CH.St b34

IG.T2 b5 OH.3a–d, OH.ST8 b20 NFR1 b35

IG.St1a, IG.St1b b6 CO.C1a–d, CO.SC8 b21 NFR2 b36

IG.St3a, IG.St3b b7 CO.T1a–d, CO.ST8 b22 NFR3 b37

IG.St4a, IG.St4b b8 BCO.T1–T7 b23 NF6 b38

CH3.C1a, CH3.C1b b9 BCH2O.T1–T3 b24 NF7 b39

CH3.T1a, CH3.T1b b10 SR.10c b25 NF11 b40

CH3.C2 b11 F1 b26 NF12/13 b41

CH3.T2 b12 F2, F3 b27 NFR4 b42

CH3.C3 b13 F4 b28 NFR5 b43

CH3.T3 b14 F6 b29 CHNO.St b44

CH3.C4 b15 SF7 b30

5.4. Posterior predictions for model parameters. Our initial comparison is for the cali-
bration parameter vector, x: BCP posterior distributions versus B2B bounds. The latter are
computed by sequential execution of the B2B predictions for Mi(x) = xi, i = 1, . . . , 102. The
results for all 102 variables are shown in Figure 5. The length of the abscissa in all individual
plots is the prior uncertainty interval. The B2B predicted intervals are drawn as horizontal
lines. Both the outer and inner B2B intervals are given. The difference between them for an
individual xi indicates the uncertainty of the B2B procedure itself; the difference can be nar-
rowed down through additional iterations. The green histograms designate the BCP posterior
distributions.

The results presented in Figure 5 demonstrate several features. In 83 out of 102 cases,
the B2B predictions for the xi intervals are of the same length as the prior ones. In other
words, the collaboration of all the data produces a feasible set whose projections on most xi
axes span the original ranges. This implies that while the volume of F is orders of magnitude
smaller than the initial prior cube H [15], the feasible set still spans prior intervals in those
xi directions. Physically this means that the experimental data included in the analysis,
while substantially lowering the total system uncertainty, do not contribute to lowering the
uncertainty in individual xi’s. The BCP posteriors for 67 of the 102 cases are “uninformative”
(x3, for instance), in agreement with the corresponding B2B predictions.

There are also a substantial number of cases where the collaboration of data narrows down
the predicted range of an xi, and in many of those cases the two methods are in agreement
with each other, for example, x35.

There are also differences between the two sets of results. Consider the case of x1. B2BD
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x1 x2 x3 x4 x5 x6

x7 x8 x9 x10 x11 x12

x13 x14 x15 x16 x17 x18

x19 x20 x21 x22 x23 x24

x25 x26 x27 x28 x29 x30

x31 x32 x33 x34 x35 x36

x37 x38 x39 x40 x41 x42

x43 x44 x45 x46 x47 x48

x49 x50 x51 x52 x53 x54

x55 x56 x57 x58 x59 x60

x61 x62 x63 x64 x65 x66

x67 x68 x69 x70 x71 x72

x73 x74 x75 x76 x77 x78

x79 x80 x81 x82 x83 x84

x85 x86 x87 x88 x89 x90

x91 x92 x93 x94 x95 x96

x97 x98 x99 x100 x101 x102

Figure 5. Comparison of predictions for model parameters. The length of the abscissa is the prior uncer-
tainty interval; green histogram is the BCP posterior; red and blue horizontal bars are the predicted B2B outer
and inner bounds, respectively.
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predicts the x1 values to lie on the left part of the interval, while the BCP posterior puts
mass on the entire interval. A B2B sensitivity analysis [25] reveals that the upper bound of
x1 is essentially controlled by the upper bound of experimental QoI labeled SF7. But the
BCP analysis produces a bias for SF7 (not illustrated here) whose posterior distribution lies
entirely to the right of 0. In essence BCP trades information about x1 for information about
the bias. Which of these conclusions is appropriate is unclear, nor is it clear whether the
upper bound for SF7 should be challenged.

There are also cases, like x59, where the B2B-predicted bounds do not shrink the initial
interval, but the BCP posterior has a clear peak in the middle of the interval. Such results
suggest that the feasible set F has mostly a “Gaussian”-like distribution in the x59th dimen-
sion but contains “remote” points that pass all the uncertainty constraints from the B2B
perspective.

5.5. Predictions for new QoIs: Leave one out. Our next comparison involves removing
a single QoI from the dataset of 76, and then using the remaining 75 to predict the omitted
QoI. This results in 76 analyses and predictions.

The B2B results are obtained by applying the model prediction technique detailed in
section 4.4.3; the BCP results follow (4.9). The uncertainties of the predictions do not take into
account the measurement error in the omitted QoI because it would generally be unavailable.

We report the predictions in Figure 6; the former exhibits the B2B bounds along with
posterior distributions of pure-model predictions, as defined in (4.9). Also reported in the
figure, for comparison, are the ranges of the corresponding experimental QoI values, which do
include their measurement errors.

Details on how the Bayesian computations were implemented are as follows. For each
of the 76 analyses, we carried out the MCMC calculations to obtain a posterior sample

{x(e)
k ,b

(e)
k , k = 1, . . . ,K} which does not include the data point corresponding to the eth

QoI, ye, e = 1, . . . ,m. This allows us to obtain a sample from the pure-model prediction of Ye
by computing {Me(x

(e)
k ), k = 1, . . . ,K}. Histograms of these draws are depicted in Figure 6.

Inspection of the results presented in Figure 6 indicates several features. There are cases,
like CH3.T2 or OH.3c, where the B2B and BCP are in close agreement with each other as
well as with the experimental data. In some cases, e.g., BCO.T4, the B2B predictions are
wider than BCP; in some cases, e.g., CH3.C3, the BCP predictions are wider than B2B’s.
This last observation is due to BCP sampling outside the B2B feasible set, a consequence
of the distributional assumption on e in (4.7). In some cases, e.g., NF6, predictions of both
methods are wider than the experimental ones, suggesting that the omitted QoI conveys
valuable information about x not obtained in the remaining 75 experiments. In other cases,
e.g., NF11, the predicted intervals are narrower than experimental ones, suggesting that such a
QoI does not add to the knowledge already present in the rest of the dataset. This comparison
underlies a measure of information content of an experiment treated in [15] and [19].

5.5.1. Predictions when model bias is present. If we thought that the bias was model
discrepancy and not measurement bias, we would be using bias-corrected predictions rather
than pure-model predictions. It is interesting to note the effect of so doing and the compar-
ison with the results in section 5.5. The B2B bounds remain the same. The bias-corrected
prediction was in section 4.5.2. As discussed there, we need to make an assumption about howD
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IG.1a IG.1b IG.2 IG.6a IG.6b IG.T1

IG.T2 IG.St1a IG.St1b IG.St3a IG.St3b IG.St4a

IG.St4b CH3.C1a CH3.C1b CH3.T1a CH3.T1b CH3.C2

CH3.T2 CH3.C3 CH3.T3 CH3.C4 CH3.T4 CH3.StC6

CH3.StC7 OH.1a OH.1b OH.2 OH.3a CO.C1a

CO.T1a OH.3b CO.C1b CO.T1b OH.3c CO.C1c

CO.T1c OH.3d CO.C1d CO.T1d OH.St8 CO.ST8

CO.SC8 BCO.T1 BCO.T2 BCO.T3 BCO.T4 BCO.T5

BCO.T6 BCO.T7 BCH2O.T1 BCH2O.T2 BCH2O.T3 SR.10c

F1 F2 F3 F4 F6 SF7

StF8 SNO.C11 SCH.C11 SCH.C12 SCH.C13 SCH.St

NFR1 NFR2 NFR3 NF6 NF7 NF11

NF12/13 NFR4 NFR5 CHNO.St

Figure 6. “Leave-one-out” experiment. Comparison of predictions for QoIs. The black horizontal bar is
the range of experimental values; red and blue bars are the predicted B2B outer and inner bounds, respectively;
green histogram is the BCP posterior pure-model prediction.
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Table 2
Selection of the bias in the leave-one-out experiment. For those QoIs that belong to a group with more than

one element, we use the bias of that group, defined in Table 1.

QoI Bias QoI Bias QoI Bias

IG.2 b1 OH.2 b18 NFR2 b35

IG.T1 b20 SR.10c b42 NFR3 b35

IG.T2 b6 F1 b27 NF6 b35

CH3.C2 b9 F4 b27 NF7 b35

CH3.T2 b10 SF7 b27 NF11 b40

CH3.C3 b9 StF8 b27 NF12/13 b40

CH3.T3 b10 SNO.C11 b33 NFR4 b42

CH3.C4 b9 CH.St b35 NFR5 b42

CH3.T4 b10 NFR1 b35 CHNO.St b9

be—the bias associated with the left-out QoI—relates to the biases of the experimented-upon
QoIs. Our approach is quite natural. Recall that we have grouped the experiments in order
to construct the prior on the bias term. That grouping is described in Table 1. If the left-out
QoI belongs to a group j(e) that contains more than one experiment, we use the samples from
that bias to compute

Ye(x
(e)
k ) = Me(x

(e)
k ) + b

(e)
j(e),k .

If the left-out QoI is the only experiment in the grouping of Table 1, then we select a “neighbor”
experiment from which we borrow the bias. Those are described in Table 2. The resulting
draws are depicted in the form of histograms in Figure 7.

It should be noted that the extrapolation used to obtain be is done without adequate
information on how “neighboring” biases relate to be, unlike what happens, for instance,
in [1]. This is clearly a risky process and one that emphasizes the open question of what
constitutes acceptable extrapolation. An interesting and more conservative alternative, raised
by a referee, would be using the prior density for the bias term of a QoI that is not part of a
group. We have not yet explored such a possibility.

Inspection of Figure 7 indicates that there are cases (OH.3c) when both pure-model and
bias-corrected BCP posteriors are essentially the same. There are instances, e.g., F6 or NFR4,
when inclusion of the bias term improves the BCP prediction when compared to the experi-
ment, but there are other cases, e.g., SR.10c or NFR2, where it makes it worse.

Which of these BCP predictions is generally appropriate is arguable. If all the biases are
measurement bias, i.e., model discrepancy is ignorable, we would have no way of determining
the measurement error in a new QoI or its possible bias. In such a case, using a “nearby”
bias term (as done in bias-corrected prediction) is inappropriate, and pure-model prediction
is called for. On the other hand, if the biases are from model discrepancy, then using bias-
corrected prediction is called for; whether the particular way we define and use neighboring
QoIs is reasonable is another matter. If both elements are present, it is unclear which, if
any, of the two prediction methods is appropriate. Viewing the results in Figures 6 and 7,
we note that measurement bias is more pronounced than model discrepancy; of course, the
assumptions in our problem point to measurement bias.D
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IG.1a IG.1b IG.2 IG.6a IG.6b IG.T1

IG.T2 IG.St1a IG.St1b IG.St3a IG.St3b IG.St4a

IG.St4b CH3.C1a CH3.C1b CH3.T1a CH3.T1b CH3.C2

CH3.T2 CH3.C3 CH3.T3 CH3.C4 CH3.T4 CH3.StC6

CH3.StC7 OH.1a OH.1b OH.2 OH.3a CO.C1a

CO.T1a OH.3b CO.C1b CO.T1b OH.3c CO.C1c

CO.T1c OH.3d CO.C1d CO.T1d OH.St8 CO.ST8

CO.SC8 BCO.T1 BCO.T2 BCO.T3 BCO.T4 BCO.T5

BCO.T6 BCO.T7 BCH2O.T1 BCH2O.T2 BCH2O.T3 SR.10c

F1 F2 F3 F4 F6 SF7

StF8 SNO.C11 SCH.C11 SCH.C12 SCH.C13 SCH.St

NFR1 NFR2 NFR3 NF6 NF7 NF11

NF12/13 NFR4 NFR5 CHNO.St

Figure 7. “Leave-one-out” experiment. Comparison of predictions for QoIs. The black horizontal bar is
the range of experimental values; red and blue bars are the predicted B2B outer and inner bounds, respectively;
green histogram is the BCP bias-corrected posterior.
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5.6. B2B-BCP connection. The elicitation of opinion from experts about the nature of
measurement uncertainty leading to (4.2) has a Bayesian interpretation but manifests itself
in terms of bounds rather than distributions. But there is a theoretical connection between
the BCP and B2B approaches: In (4.7), replace the previous assumption about εe with the
assumption that they are independent random variables with a uniform distribution on the
fixed interval (−ae, ae), ae = (Ue − Le)/2 > 0. The sampling density of the observed data is
then

f(y | x,b,a) =

m∏
e=1

U(ye |Me(x) + be − ae,Me(x) + be + ae) .

For x use, as before, a uniform prior on H. The posterior of x given the data y and the
parameters a and b is

π(x | a,b,y) ∝ 1P(x),

where

P = {x ∈ H : ∀e = 1, . . . ,m, Me(x) + be − ae < ye < Me(x) + be + ae}
= {x ∈ H : ∀e = 1, . . . ,m, ye − ae − be < Me(x) < ye + ae − be} .

If we set be = ye − (Ue + Le)/2, then P = F , the feasibility set.
The distinction with the BCP formulation in section 4.5 is the change in the assumptions

on εe and not having a prior on b. In the Bayesian formulation, b has a prior distribution;
here a “plug-in” value is used to estimate the “incidental” parameters, b. What is lacking is
an adequate assessment of uncertainty arising from the data-dependent choice of the plug-in
for b. Nevertheless, the similarity of predictions via B2B or BCP seen in Figures 6 and 7 is
thus understood.

6. Conclusions and comments. What can we learn from these analyses? The results in
Figure 6 suggest that, except for a handful of cases, pure-model predictions are consistent with
the B2B bounds. Moreover, both are “equally close” to the QoI experimental bounds. What
differences are present may or may not be of practical concern; this is a matter for domain
scientists to resolve. Neither the B2B nor the BCP approach dominates: the B2B analysis
makes assumptions that are different and plausibly closer to the experimenters knowledge;
the BCP approach uses the inputs to the B2B analysis along with additional assumptions and
produces a more nuanced assessment of uncertainty.

Despite the assumption that there is no model bias there is always the nagging question
of whether such a bias is present. Comparing Figures 6 and 7, it appears bias-corrected
predictions are not as good as the pure-model predictions, suggesting that measurement bias
is a dominant component of b. In cases where there is wide discrepancy between the B2B
bounds and one of the BCP methods (for example, QoIs SR.10c, NFR5, and SF7) it may
be useful to opt for the “other” BCP method, creating a hybrid strategy. Shortcomings in
the reliability and knowledge of the experimental data can be a more significant factor in
interpretation of results than differences between the methods of analysis.

Generalizing these methods to other contexts should take into account that we have made
some specific assumptions such as reduction of the ODE system and relatively fast compu-
tation of solutions, quadratic polynomial surrogates, and absence of model bias. AlternateD
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surrogate schemes as noted in section 3.1 are available for other contexts but with added
complexity for B2B. MCMC computations may become more burdensome with nonreduced
systems and high-order surrogates. The presence of model bias as pointed out in section 4.5.2
can be troublesome for prediction and interpretation.

Appendix A. Optimization methods. Without loss of generality, we just consider mini-
mizations with inequality constraints, referred to as primal problems,

p∗ = min
x∈Rn

f(x)

subject to: gj(x) ≤ 0 for j = 1, . . . ,m.

Any direct attempt at this constrained optimization typically only yields an upper bound to
p∗, since the true minimum may not have been found, due to nonconvexity of the function
and/or constraint set, for example. In order to bracket p∗, a lower bound is also needed.
Lower bounds are often obtained by considering the associated dual (to the primal) problem

q∗ = max
λ∈Rm

min
x∈Rn

f(x) + λTg(x)

subject to: λj ≥ 0 for j = 1, . . . ,m,

which always has q∗ ≤ p∗, giving (if q∗ is reliably computed) a lower bound to the primal.
As we are considering minimization, lower and upper bounds on p∗ are referred to as outer
and inner bounds, respectively. Additionally, the solution of the dual problem informs how
p∗ is affected by changes in the constraints. Specifically, the primal problem with variable
constraints, v,

p∗(v) = min
x∈Rn

f(x)

subject to: gj(x) ≤ vj for j = 1, . . . ,m,

is related to the optimal dual variables λ∗, which act as global (one-sided) sensitivities through
the bound q∗ − vTλ∗ ≤ p∗(v) for all v ∈ Rm. Finally, and of critical importance, if the
functions f and all gj are quadratic (not necessarily sign-definite), then the dual problem is
solved efficiently via semidefinite programming [3, 27]. Problems with hundreds of variables
(n) and constraints (m) are routine, even in a desktop environment. Taken together, the
efficiently computed bound q∗ and sensitivities λ∗ highlight an important consequence for B2B
uncertainty quantification with quadratic response-surface models.

The deterministic perspective of B2B directly leads to the constrained minimization (pri-
mal) discussed here. Under the quadratic-dependence restriction on f and all gj , the lower
bound q∗ provided by the dual problem is equivalent to a stochastic formulation [11]. Specifi-
cally, replace the deterministic variable x with a random variable X, the only restriction being
of finite variance, and modify the cost and constraints of the primal problem to reflect mean
values, as

s∗(v) = min
X

E [f(X)]

subject to: E [gj(X)] ≤ vj for j = 1, . . . ,m,D
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where E denotes expectation and the minimization is taken over all random variables X with
finite variance. Then s∗(v) = q∗(v), where q∗(v) refers to the dual problem for p∗(v), and
hence p∗ and s∗ satisfy global sensitivity relations s∗(0)−vTλ∗ ≤ s∗(v) ≤ p∗(v) for all v ∈ Rm.
So, while s∗ is not a Bayesian estimate as discussed in section 4.5, it offers a probabilistic
interpretation of the computed outer bounds in the B2B results. Furthermore, s∗ (along with
global sensitivities) is computed efficiently, is independent of priors, and satisfies a known
relation to the deterministic minimization.

In conclusion, bounds to individually bracket CD, LP, and UP are solved efficiently using
polynomial optimization techniques when all the models are quadratic in the parameters
[14, 15, 27]. Further use of branch-and-bound techniques [7] tightens the bracketing interval
of each quantity. Solving these optimizations also automatically generates sensitivities of
the computed results to the parameter and experiment uncertainties [25]. Extension of the
methodology to more general polynomial models is treated in [27] and to nonpolynomial
surrogate models, such as Gaussian process, Kriging, or ε-SVM, is treated in [9].

Appendix B. GRI-Mech QoIs. For the dataset of the present study, 76 experimental QoIs
of the GRI-Mech 3.0 release [29] were selected. These QoIs were composed of

• shock-tube (ST) ignition delays;
• species concentration peaks and times of these peaks in shock-heated mixtures;
• species maximum concentrations and times to attain half of the maximum values in

shock-heated mixtures;
• flow-reactor observations: temperature rise and species concentrations at the reactor

exit;
• laminar flame speeds;
• laminar flame maximum species concentrations;
• laminar flame species ratios.

A brief account of these QoIs is given in Table 3, which also reports the assessed experimental
uncertainties [29, 34], lists the experimental series, and identifies laboratories of the experi-
mental studies. Further details can be found in [29, 34]. All these QoI data are also available
as an HDF5 file in the supplementary materials (gri mech 30.h5 [local/web 871KB]).

Table 3
QoIs of the natural-gas combustion dataset (GRI-Mech 3.0 [29, 34]).

Key Description Measured Expt. Expt. Research

value unc. series lab

IG.1a
ST ign. delay at
1.8 atm, 1500 K

800 µs ±15%
9.1%CH4-
18.2%O2-Ar

Seery,
Bowman 1970

IG.1b
ST ign. delay at
2 atm, 1700 K

105 µs ±10%

IG.2
ST ign. delay at
3.8 atm, 1600 K

335 µs ±10%
33.3%CH4-
13.3%O2-Ar

IG.St3a
ST ign. delay at
1.6 atm, 1530 K

500 µs ±10%
4.8%CH4-
19.1%O2-Ar

IG.St3b
ST ign. delay at
1.9 atm, 1845 K

43 µs ±10%
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Table 3
Continued.

IG.6a
ST ign. delay at
0.25 atm, 1600 K

436 µs
−30%,
+10%

0.5%C2H6-
1.8%O2-Ar

Hidaka,
Gardiner 1982

IG.6b
ST ign. delay at
0.25 atm, 1600 K

222 µs
−20%,
+10%

0.5%C2H6-
5.0%O2-Ar

IG.T1
ST ign. delay at
2.5 atm, 1410 K

275 µs ±25%
9.5%CH4-
1.9%C3H8-
19.0%O2-Ar

Frenklach,
Bornside 1984

IG.T2
ST ign. delay at
7.1 atm, 1640 K

63.2 µs ±20%
3.4%CH4-
0.1%C3H8-7%O2-
Ar Spadaccini,

Colket 1994
IG.St1a

ST ign. delay at
6.1 atm, 1356 K

1.0 ms
−10%,
+20% 3.29%CH4-

0.21%C2H6-
7%O2-ArIG.St1b

ST ign. delay at
7.6 atm, 1688 K

39 µs
−10%,
+20%

IG.St4a
ST ign. delay at
34.6 atm, 1408 K

534 µs ±10%
2.4%CH4-
6.7%O2-Ar

Hanson et al.
1995

IG.St4b
ST ign. delay at
83.9 atm, 1706 K

160 µs ±50%
0.28%CH4-
0.56%O2-Ar

CH3.C1a
ST CH3-peak conc at 1
atm, 2000 K

162 ppm ±50%

0.1%CH4-
0.2%O2-Ar

Chang,
Davidson,
DiRosa,
Hanson,
Bowman 1994

CH3.T1a
ST CH3-peak time at 1
atm, 2000 K

397 µs ±10%

CH3.C1b
ST CH3-peak conc at 1
atm, 2400 K

290 ppm ±50%

CH3.T1b
ST CH3-peak time at 1
atm, 2400 K

50 µs ±10%

OH.1a
ST time to 1

2
OH max at

1 atm, 2000 K
700 µs ±30%

OH.1b
ST time to 1

2
OH max at

1 atm, 2200 K
255 µs ±20%

CH3.C4
ST CH3-peak conc at 1
atm, 2264 K

451 ppm ±25%
0.2%CH4-
0.1%O2-Ar

CH3.T4
ST CH3-peak time at 1
atm, 2264 K

83 µs ±10%

CH3.StC6
ST CH3-peak time at 1
atm, 2454 K

27 µs ±20%
0.1%CH4-
0.4%O2-Ar

CH3.StC7
ST CH3-peak time at 1
atm, 1932 K

510 µs ±10%

CH3.C2
ST CH3-peak conc at 1.2
atm, 1794 K

342 ppm ±10%

0.03%C2H6-
0.1%O2-Ar

CH3.T2
ST CH3-peak time at 1
atm, 2264 K

59 µs ±50%

OH.2
ST time to 1

2
OH max at

1.2 atm, 1817 K
193 µs ±10%

CH3.C3
ST CH3-peak conc at
1.35 atm, 1684 K

155 ppm ±10% 0.02%C2H6-Ar
Hanson et al.
1992

SCH.St
ST max CH conc at 1.8
atm, 2800 K

3.11 ppm ±20%
0.008%CH4-
0.01%O2-Ar

Hanson et al.
1998

CHNO.St
ST max CH conc at 1.8
atm, 2800 K

1.57 ppm ±10%
0.008%CH4-
0.01%O2-
0.04%NO-Ar
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Table 3
Continued.

OH.3a
ST time to 1

2
OH max at

1.51 atm, 1750 K
159 µs ±10%

0.4%CH4-20%O2-
Ar

Yu, Wang,
Frenklach
1995

CO.C1a
ST CO-peak conc at 1.51
atm, 1750 K

38
nmol/cm3 ±10%

CO.T1a
ST time to 1

2
CO max at

1.51 atm, 1750 K
155 µs ±10%

OH.3b
ST time to 1

2
OH max at

1.64 atm, 1900 K
58 µs ±20%

CO.C1b
ST CO-peak conc at 1.64
atm, 1900 K

37
nmol/cm3 ±10%

CO.T1b
time to 1

2
CO max at 1.64

atm, 1900 K
58 µs ±10%

OH.3c
ST time to 1

2
OH max at

1.51 atm, 1750 K
551 µs ±25%

1%CH4-3%O2-Ar

CO.C1c
ST CO-peak conc at 1.51
atm, 1750 K

92
nmol/cm3 ±10%

CO.T1c
ST time to 1

2
CO max at

1.51 atm, 1750 K
481 µs ±15%

OH.3d
ST time to 1

2
OH max at

1.64 atm, 1900 K
201 µs ±25%

CO.C1d
ST CO-peak conc at 1.64
atm, 1900 K

90
nmol/cm3 ±10%

CO.T1d
ST time to 1

2
CO max at

1.64 atm, 1900 K
179 µs ±20%

OH.St8
ST time to 1

2
OH max at

2.45 atm, 1865 K
400 µs ±30%

1%CH4-1.5%O2-
Ar

CO.ST8
ST time to 1

2
CO max at

2.45 atm, 1865 K
340 µs ±30%

CO.SC8
ST CO-peak conc at 2.45
atm, 1865 K

127 µs ±10%

BCO.T1
ST time to 1

2
CO max at

1.17 atm, 2124 K
14.2 µs ±10% 1.46%CH2O-Ar

Eiteneer, Yu,
Goldenberg,
Frenklach
1998

BCO.T2
ST time to 1

2
CO max at

1.51 atm, 1724 K
88.2 µs ±10% 1.97%CH2O-Ar

BCO.T3
ST time to 1

2
CO max at

5.88 atm, 1784 K
30.7 µs ±20%

1.47%CH2O-
0.25%O2-Ar

BCO.T4
ST time to 1

2
CO max at

1.89 atm, 1442 K
158 µs ±10%

0.49%CH2O-
1.98%O2-Ar

BCO.T5
ST time to 1

2
CO max at

0.91 atm, 1768 K
27.2 µs ±20%

1%CH2O-
5.96%O2-Ar

BCO.T6
ST time to 1

2
CO max at

2 atm, 1515 K
115 µs ±25%

1%CH2O-
0.6%O2-Ar

BCO.T7
ST time to 1

2
CO max at

1.51 atm, 1720 K
32.7 µs ±10%

1.5%CH2O-
1.5%O2-Ar

BCH2O.T1
ST time to 1

2
CO max at

1.55 atm, 1256 K
282 µs ±10%

4%CH2O-1%O2-
Ar Hidaka et al.

1993
BCH2O.T2

ST time to 1
2

CO max at
2.31 atm, 1591 K

20.8 µs ±20%

BCH2O.T3
ST time to 1

2
CO max at

1.81 atm, 1419 K
126 µs ±10%

2%CH2O-1%O2-
Ar
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Table 3
Continued.

SR.10c
Flow Reactor T @ CO2

= 500 ppm at 1.17 atm,
2124 K

1439 K ±10%
0.147%CH4-
0.3%O2-
1.9%H2O-N2

Glarborg
et al. 1995

NFR4
Flow Reactor NO conc at
exit at
1.04 atm, 1323 K

563 ppm ±30% 0.29%CH4-
0.03%C2H6-
0.51%O2-
0.01%NO-
2.2%H2O-N2

Glarborg
et al. 1997

NFR5
Flow Reactor HCN conc
at exit at
1.04 atm, 1323 K

29 ppm ±10%

NFR1
Flow Reactor HCN conc
at exit at
1.05 atm, 1165 K

0.16 ppm ±0.06

0.03%HCN-
0.17%CO-
2.4%O2-
2.8%H2O-N2

Miller,
Glarborg
et al. 1994

NFR2
Flow Reactor NO conc at
exit at
1.05 atm, 1165 K

0.18 ppm ±0.03

NFR3
Flow Reactor N2O conc
at exit at
1.05 atm, 1165 K

0.14 ppm ±0.05

F1
Flame speed at
1 atm, φ = 0.98

35.6 cm/s ±2

CH4-air
Egolfopoulos
et al. 1989-97

F2
Flame speed at
1 atm, φ = 1.43

12.4 cm/s ±2

F3
Flame speed at
1 atm, φ = 0.67

13.5 cm/s ±2

F4
Flame speed at
3 atm, φ = 1

22.7 cm/s ±2

StF8
Flame speed at
1 atm, φ = 1

40.2 cm/s ±2 C2H6-air

F6
Flame speed at
19.7 atm, φ = 1

20.4 cm/s ±2 CH4-air Just 1994

SF7
Flame speed at
1 atm, φ = 1.69

180 cm/s ±2
20.8%CO-
20.8%H2-air

McLean et al.
1994

SNO.C11
Flame max NO conc at
0.033 atm

17.5 ppm ±15%
13.8%CH4-
25.9%O2-N2

SRI 1996-97
SCH.C11

Flame max CH conc at
0.033 atm

11.3 ppm ±10%

SCH.C12
Flame max CH conc at
0.033 atm

4.1 ppm ±0.7
10%CH4-
24.7%O2-N2

SCH.C13
Flame max CH conc at
0.0395 atm

21.5 ppm ±2.9
16.3%CH4-
25.5%O2-N2

NF6
Flame max NO conc at
25 Torr

1580 ppm ±160
28%H2-9%O2-
2%HCN-Ar

Sandia 1984
NF7 Flame [CN]max

[CN]5cm
at 25 Torr 2.04 ±15%

NF11 Flame
[CH]X=1.2%NO

[CH]X=0
at 10

Torr
0.95 ±0.1

19%CH4-38%O2-
X-Ar

Williams,
Fleming 1994

NF12/13
Flame

[CN]X=1.2%NO
[CN]X=1.2%N2O

at

10 Torr
2.9 ±0.6
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