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Abstract	
	
A	validation	and	uncertainty	quantification	study	of	a	1.5	MW	oxy-coal	fired	furnace	
is	presented.	In	this	study,	a	consistency	analysis	approach	was	applied	to	
experimental	and	simulation	results	for	eight	quantities	of	interest:	thermocouple	
measurements	in	five	locations	down	the	length	of	the	furnace	and	three	radiometer	
measurements	in	the	first	three	sections	of	the	furnace.	Instrument	models	were	
devised	for	both	the	thermocouples	and	radiometer	measurements	so	that	
experimental	and	simulation	data	could	be	compared.	A	total	of	six	parameters	were	
tested	through	the	consistency	analysis.	In	the	simulations,	two	parameters	were	
tested,	the	thermal	wall	resistance	and	a	coal	devolatilization	parameter.	In	the	
instrument	models,	four	parameters	were	tested:	the	emissivity	of	the	
thermocouple	in	the	thermocouple	model	and	the	emissivities	of	the	cold	targets	
opposite	the	three	radiometers	in	the	radiometer	model.	Based	on	this	analysis,	it	
was	concluded	that	devolatilization	parameter	had	the	weakest	effect	on	the	QOIs	of	
the	six	parameters	tested.	In	order	to	simplify	the	analysis,	it	is	recommended	that	
the	cold	targets	on	the	walls	opposite	the	radiometers	be	removed	to	reduce	the	
sensitivity	of	the	wall	emissivity	parameter	in	the	instrument	model;	this	change	
will	be	applied	in	the	next	experimental	campaign.	Also,	because	of	the	large	
sensitivity	of	the	consistent	region	to	the	uncertainty	range	for	thermocouple	
measurements	in	the	first	sections	of	the	furnace,	wall	temperature	measurements	
with	better-quantified	errors	will	be	used	in	future	experiments.	
	
Nomenclature		

	
𝜀	 Emissivity	 [-]	

𝑞!"#!$%"&	 Incident	radiation		 [W/m2]	
𝜎	 Stefan-Boltzmann	constant		 5.670373	e-8	

[W/m2/K4]	
𝑅	 Thermal	resistance		 [W/m2/K]	
𝑇	 Temperature	 [K]	
𝑘! 	 Thermal	conductivity		 [W/m/K]	
∆𝑥! 	 Layer	thickness		 [m]	
𝑣!!" 	 Devolatilization	parameter	 [-]	
𝑉!	 Ultimate	volatile	yield		 [-]	
𝑇!	 Particle	temperature		 [K]	
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𝑉	 Volatile	yield		 [-]	
𝐴	 Pre-exponential	factor		 [1/s]	
𝐸	 Activation	temperature	 [K]	
𝜎!	 Distribution’s	standard	deviation		 [K]	
𝑍	 max (−4.0,min( 2.0 ∗ 𝑒𝑟𝑓𝑖𝑛𝑣(1.0− 2.0 ∗ (𝑉! −

𝑉)/𝑣!!" , 4.0))	
	

𝑞!"#$%&' 	 Heat	removed		 [W/cell/m2]	
𝑘
𝐿	

Thermal	conductivity	over	thickness	of	the	
thermocouple		

[W/m2/K]	

ℎ	 Heat	transfer	coefficient	on	the	thermocouple		 [W/m2/K]	
𝑠𝑜𝑙𝑖𝑑_𝑎𝑛𝑔𝑙𝑒	 Solid	angle	for	the	radiometer	 	

𝐼	 Intensity	 [W/m2]	
𝐼!	 𝜎𝑇!"# !

𝜋 	
[W/m2]	

𝑘!!!	 Absorption	coefficient		 [1/m]	
∆𝑥	 Resolution	 [m]	
𝑁! 	 Number	of	rays		 	
𝐼!	 Intensity	at	the	wall	oppose	to	radiometer		 [W/m2]	

	 	 	
Subscripts		 	 	
𝑐𝑜𝑙𝑑_𝑡𝑎𝑟𝑔𝑒𝑡	 Heat	flux	gauge		 	

𝑡𝑐	 Thermocouple	instrument		 	
𝑔𝑎𝑠	 Gas	 	
𝑠ℎ𝑒𝑙𝑙	 Shell	 	
𝑤	 Wall	 	
p	 Particle	 	

	
1. Introduction	

	
The	Carbon	Capture	Multidisciplinary	Simulation	Center	(CCMSC)	
(http://ccmsc.utah.edu),	at	the	University	of	Utah	is	demonstrating	the	use	of	
exascale	computing	with	verification,	validation,	and	uncertainty	quantification	as	a	
means	of	accelerating	deployment	of	low	cost,	low	emission	coal-fired	power	
generation	technologies.	This	effort	employs	a	hierarchical	validation	approach	to	
obtain	simultaneous	consistency	between	a	set	of	selected	experiments	at	different	
scales	embodying	the	key	physics	components	(large	eddy	simulations,	multiphase	
flow,	particle	combustion	and	radiation)	of	a	full-scale,	oxy-fired	boiler.	This	paper	
presents	validation	and	uncertainty	quantification	(VUQ)	results	for	one	of	the	
selected	datasets,	a	suite	of	oxycoal-fired	experiments	conducted	in	the	L1500	(a	1.5	
MW	furnace	at	the	University	of	Utah).		The	VUQ	method	used	was	a	consistency	
analysis.	With	this	method,	regions	of	consistency	between	experimental	and	
simulation	data	were	determined.	Details	about	the	L1500	furnace	and	the	
experimental	data	can	be	found	in	Fry	et	al	[1].	This	paper	focuses	on	the	L1500	
simulations,	the	collection/processing	of	the	simulation	data,	and	the	VUQ	
consistency	analysis.	
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2. Methodology		
	
To	perform	a	VUQ	analysis,	the	quantity	(or	quantities)	of	interest	(QOI)	and	the	
system	parameters	(scenario,	model,	numerical)	that	have	a	first	order	impact	on	
the	QOIs	are	identified.	In	this	experimental	dataset,	the	QOIs	relate	to	heat	flux:	
wall	temperature	measured	by	thermocouples,	and	heat	flux	measured	by	narrow-
angle	radiometers.	For	this	initial	analysis,	a	two-parameter	study	was	selected	due	
to	constraints	of	time	and	computer	resources.	
	

2.1 Design	of	Experiments	
	
The	two	parameters	explored	in	this	study	were	a	devolatilization	model	parameter	
and	a	scenario	parameter	related	to	thermal	resistance	in	the	wall	heat	transfer	
model.	These	parameters	were	selected	based	on	prior	experience	and	a	desire	to	
have	one	model	parameter	that	was	investigated	at	all	relevant	levels	of	the	
validation	hierarchy.	
	
Within	the	simulation	tool,	the	models	for	coal	particle	physics	include	a	
devolatilization	model	that	is	presented	in	equations	(1)	and	(2).	In	this	model,	the	
ultimate	volatile	yield	is	determined	by	the	function	shown	in	Equation	(1):	
	

	         𝑉! =
!!!"
!

1− tanh ( 𝑏 + 𝑐 ∗ 𝑣!!" ∗ !"#!!!
!!

+ (𝑑 + 𝑒 ∗ 𝑣!!") 								(1)	

	

														!"
!"
= 𝐴 ∗ exp − !!!!∗!

!!
𝑉! − 𝑉 ,    𝑖𝑓 𝑉! − 𝑉 ≤ 0   

0                                ,         𝑒𝑙𝑠𝑒
																							(2)	

	
In	equation	(1),	the	parameters	b,	c,	d	and	e	were	fitted	using	data	from	the	
Chemical	Percolation	Devolatilization	(CPD)	model	[2].	The	parameter	𝑣!!" 	was	
explored	in	this	VUQ	analysis	in	the	range	of	0.5–0.9.	The	volatile	yield	was	used	in	
equation	(2)	to	compute	the	rate	of	devolatilization.	More	detailed	information	
about	this	new	devolatilization	model	can	be	found	in	[3].	
	
A	scenario	parameter	called	the	“effective	thickness”	is	related	to	the	thermal	
resistance	used	in	the	one-dimensional	(1D)	wall	heat	transfer	model	equation	
shown	in	equation	(3).	The	walls	of	the	L1500	furnace	consist	of	one	layer	of	
refractory	material	and	three	insulation	layers	for	a	total	wall	thickness	of	0.34	m.	
The	1D	heat	transfer	equation	for	this	multilayer	wall	is	given	in	equation	(4).	
Finally,	the	“effective	thickness”	scenario	parameter,	!

!
	,	is	presented	in	equation	(5).	

The	selected	range	for	this	parameter	was	0.1–0.4	based	on	uncertainty	in	the	wall	
emissivity	and	on	temperature	dependence	of	the	thermal	conductivity.	
	
																																		𝜀 𝑞!"#!$%"& − 𝜎𝑇!! = 𝑅(𝑇! − 𝑇!!!""  )																																													(3)	
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																											 𝑞!"#!$%"& − 𝜎𝑇!! = !

!
∆!!
!!

!
!!!

𝑇! − 𝑇!!!""  																																												(4)	

																																																								!
!
= 𝜀 ∆!!

!!
!
!!!                                                                      (5)	

	
A	total	of	eight	cases	were	run	for	this	analysis.	Latin	hypercube	sampling	was	used	
to	generate	the	sets	of	parameter	values	that	best	represented	the	two-dimensional	
parameter	space.	This	eight-case	design	of	experiments	is	presented	in	Table	1.	
	
Table	1.	Design	of	experiments	for	the	VUQ	analysis.	
		

Case		 𝑣!!" 	 !
!
	[m2k/W]	

1	 0.7738	 0.10	
2	 0.5228	 0.14	
3	 0.827	 0.20	
4	 0.6019	 0.23	
5	 0.729	 0.25	
6	 0.6737	 0.32	
7	 0.88022	 0.35	
8	 0.5503	 0.37	

	
For	the	eight	cases	presented	in	Table	1,	the	following	simulation	tool,	geometry	and	
operating	conditions	were	used.		
	

2.2 Simulation	Tool	
	
The	simulations	were	performed	with	Arches,	a	component	of	the	Uintah	software	
suite	[4].	Uintah	is	a	solver	for	partial	differential	equations	on	structured	grids	
using	hundreds	to	thousands	of	processors.	
	
In	Arches,	the	turbulent	flow	is	resolved	by	the	filtered	Navier-Stokes	equations.	In	
this	Large	Eddy	Simulation	(LES)	approach,	the	large	scales	are	resolved,	and	the	
subgrid	scales	are	modeled	with	the	dynamic	Smagorinsky	model.	For	the	LES	
simulations	described	in	this	paper,	first	order	discretization	in	time	and	a	wall	
upwind	convection	scheme	were	used.	
	
The	solid	phase	was	modeled	using	the	direct	quadrature	method	of	moments	
(DQMOM)	with	three	environments.	The	internal	coordinates	were	the	raw	coal	
mass,	the	char	mass,	the	enthalpy	of	the	particle,	and	the	velocity	of	the	particle	(in	
x,	y,	and	z).	In	addition,	the	weights	for	the	three	environments	were	solved.	An	
upwind	discretization	scheme	was	used	to	solve	the	equations	for	the	internal	
coordinates	and	for	the	weights.	The	particle	phase	was	coupled	with	the	gas	phase	
through	source	terms	in	the	equations	for	momentum,	heat	and	mass.	More	detail	
about	the	DQMOM	implementation	in	Arches	is	presented	in	[5].	The	coal	particle	
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physics	models	included	the	devolatilization	model	discussed	above	and	the	
Shaddix	and	Murphy	char	oxidation	model	[6].	
	
The	gas-phase	reactions	in	the	system	were	modeled	using	a	three-stream	mixture	
fraction	approach.	The	three	streams	are	recycled	flue	gas	(𝑚!"#),	oxygen	(𝑚!!),	
and	coal	off	gas	(𝑚!).	The	mixture	fractions	based	on	these	three	streams	are	
defined	in	equations	(6),	(7)	and	(8).		
	
																																																													𝜂!,!"# =

!!"#
!!"#!!!!

																																																							(6)	

	
																																																																𝜂! =

!!"#
!!"#!!!!!!!

																																																			(7)	

	
																																																														𝜂! =

!!
!!"#!!!!!!!

																																																					(8)	

	
Transport	equations	were	solved	for	𝜂! 	and	𝜂!,!"#;	𝜂!	was	computed	from	the	other	
two	mass	fractions.	A	lookup	table	based	on	equilibrium	chemistry	assumptions	was	
tabulated	a	priori	as	a	function	of	these	three	mixture	fractions	and	of	the	system	
enthalpy.	
	
The	discrete	ordinates	(DO)	method	was	used	to	compute	radiation	in	the	
simulation.	For	the	cases	in	this	paper,	S8	quadrature,	representing	40	discrete	
directions,	was	used.	The	radiation	equations	were	solved	every	20	iterations.	
	

2.3 Geometry	and	Computational	Domain	
	
The	L1500	reactor	is	15.5	m	long	with	a	1x1	m2	transversal	area	as	shown	in	Figure	
1.	It	is	divided	into	10	sections,	and	each	section	has	several	ports	through	which	a	
variety	of	measurements	can	be	taken.	The	reactor	has	eight	sets	of	water-cooled	
tubes	that	remove	heat	from	the	first	four	sections.	Additionally,	there	is	a	water-
cooled	steel	grid	at	the	furnace	exit	to	reduce	the	temperature	of	the	combustion	
gases	prior	to	entering	the	convection	section.	The	L1500	has	a	swirling	burner	that	
can	operated	in	a	range	of	modes	from	0%	swirl,	where	completely	straight	flow	can	
be	achieved,	to	100%	swirl,	where	flow	with	a	32	m/s	tangential	velocity	and	22	
m/s	axial	velocity	can	be	obtained.	The	L1500	can	be	operated	in	air-fired	or	oxy-
fired	modes	and	can	burn	solid,	liquid,	or	gaseous	fuels.	In	oxy-fired	mode,	recycled	
flue	gas	(RFG)	is	brought	from	the	exit	of	the	convective	section	back	into	the	
burner’s	primary/secondary	oxidant	registers.	Oxygen	is	supplied	to	the	secondary	
and	primary	RFG	streams	just	prior	to	entering	the	burner.	For	the	experiments	
used	in	this	validation	study,	coal	was	fed	with	the	primary	stream	at	a	rate	of	
0.0324	kg/s	in	order	to	produce	1	MW	of	heat.	More	information	about	this	reactor	
and	burner	can	be	found	in	[7]	and	[8].	
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Figure	1:	Photo	of	the	L1500	reactor	located	at	the	Industrial	Combustion	And	
Gasification	Research	Facility	[9].	
	
Several	simulations	using	the	entire	furnace	geometry	at	a	resolution	of	16	mm	
were	carried	out	for	the	0%	swirl	case.	From	these	simulations,	it	was	clear	that	
after	section	6,	gas	temperatures,	velocities	and	chemical	compositions	were	
relatively	constant.	The	computational	geometry	was	shortened	to	7	m	and	
additional	simulations	were	run.	Differences	between	simulation	results	from	the	7	
m	and	15.5	m	simulations	were	minimal,	so	the	computational	geometry	for	the	
analysis	that	follows	is	7	m.	
	
The	impact	of	mesh	resolution	was	also	tested	by	performing	a	simulation	with	12	
mm	resolution.	While	the	differences	in	the	wall	temperature	profiles	for	the	12	mm	
and	16	mm	resolution	cases	were	small,	there	were	larger	differences	in	gas	
temperatures	near	the	burner.	Therefore,	a	12	mm	resolution	has	selected	for	the	
VUQ	analysis.		
	
The	shortened	geometry	of	the	L1500	with	a	12	mm	resolution	is	presented	in	
Figure	2;	this	geometry	includes	the	cooling	tubes	and	the	10	cm	step	up	in	the	
bottom	of	the	furnace	between	sections	4	and	5.		The	surface	area	of	the	cooling	
tubes	in	the	computational	mesh	was	adjusted	to	match	the	actual	surface	of	the	
tubes.	With	this	geometry,	comparisons	could	be	made	with	the	narrow-angle	
radiometer	measurements	in	sections	1,	2,	and	3	and	the	wall	temperature	
measurements	in	sections	1,	2,	3,	4	and	6.	
	
The	L1500	simulations	were	run	on	two	linux	machines:	Ash,	a	machine	owned	by	
the	Institute	for	Clean	and	Secure	Energy	and	operated	by	the	Center	for	High	
Performance	Computing	at	the	University	of	Utah,	and	Syrah,	a	machine	operated	by	
Lawrence	Livermore	National	Laboratory.	With	a	12	mm	mesh	resolution	(mesh	is	
uniform	and	structured),	the	computational	domain	had	4,463,448	cells.	The	
simulations	were	run	on	464	cores	long	enough	to	obtain	20	s	of	physical	time.	On	
Syrah,	this	required	80	hours	of	run	time.			
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Figure	2:	Shortened	geometry	for	the	L1500	simulations	including	the	quarl,	the	
eight	sets	of	cooling	tubes,	and	the	step	change	in	the	reactor	floor.	
	

2.4 Coal	Characterization	
	
A	Sufco	Utah	coal	was	used	in	the	experimental	campaign.	The	ultimate	analysis	for	
this	coal	is	presented	in	Table	2.		
	
Table	2.	Ultimate	analysis	for	the	Sufco	Utah	Coal.	Data	are	averaged	and	normalized	
from	the	analysis	of	five	samples.	
		

Coal	 %	Mass	
C	 66.89	
H	 4.51	
N	 1.17	
S	 0.36	
O	 13.6	
Ash	 7.88	
H2O	 5.58	
HHV	[J/kg]	 27364.93	
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To	determine	the	particle	size	distribution	(PSD)	of	the	Sufco	coal,	the	bags	of	coal	to	
be	burned	during	the	experimental	campaign	were	sampled	at	different	depths.		
Both	a	sieving	analysis	and	a	Beckman-Coulter	diffraction	analysis	were	performed	
on	the	collected	samples.	As	seen	in	Figure	3,	data	from	both	methods	were	fitted	to	
a	Rosin-Rammler	distribution.	From	this	analysis,	it	was	concluded	that	the	PSD	
distribution	could	be	approximated	by	three	particle	sizes:	15	𝜇𝑚,	60 𝜇𝑚,	and	
200 𝜇𝑚,	with	mass	weights	of	57.4%,	26.2%	and	16.4%	respectively.	Assuming	that	
the	particle	velocities	were	the	same	as	the	gas	velocity,	these	mass	weights	were	
converted	to	particles	per	cubic	meter	using	a	coal	density	of	1300	!"

!!	and	the	
volume	corresponding	to	each	particle	size.	Thus,	the	inputs	to	DQMOM	were	the	
number	of	particles	per	𝑚!	for	each	of	the	three	particles	size.	
	

	
Figure	3:	Experimental	PSD	and	fitted	Rosin-Rammler	PSD.		Sieving	was	performed	
for	different	times	to	determine	the	effect	on	the	resulting	PSD.	Based	on	this	
analysis,	only	the	30-minute	sieving	data	was	used	for	the	Rosin-Rammler	fit.	
	

2.5 Operating	Conditions		
	
An	experimental	campaign	was	carried	out	for	a	week	in	the	L1500	where	both	0%	
swirl	and	100%	swirl	operating	conditions	were	tested.	The	L1500	operating	
parameters	that	were	used	as	inputs	to	the	Arches	simulations	are	shown	in	Table	3.	
These	inputs	were	computed	from	the	mass	flow	of	the	RFG	to	the	primary	and	
secondary	registers,	the	oxygen	mass	flow	to	the	primary	and	secondary	inlets,	the	
coal	mass	flow	rate,	the	gas	temperatures	for	each	of	these	streams,	and	the	
composition	of	RFG.	All	of	these	parameters	were	recorded	and	controlled	during	
the	experimental	campaign.	For	the	0%	swirl	operating	condition,	a	constant	
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velocity	profile	at	the	tip	of	the	burner	was	assumed	for	the	primary	and	secondary	
oxidant	streams.	
	
Table	3.	L1500	operating	conditions	used	as	inputs	for	Arches	simulations.	
	

Stream	 	Mass	flow	[kg/s]	 Temperature	[K]	
Coal	(ash	and	moisture	free)	 0.0324	 338	
Primary	 0.0688	 338	
Secondary		 0.2995	 500	

Mass	Fraction	 Primary		 Secondary	
O2	 0.1739	 0.2385	
CO2	 0.6746	 0.6245	
H2O	 0.1043	 0.0966	
SO2	 0.0020	 0.0018	
N2	 0.0450	 0.0416	

	
These	operating	conditions	were	generally	stable	during	the	experiment.	However,	
there	was	an	air	leak	in	the	RFG	stream	as	evidenced	by	the	outlet	CO2	
concentration	being	lower	than	expected.	To	compensate	for	this	air	leak	in	the	
simulations,	an	overall	mass	balance	was	performed	on	the	furnace.	The	leaked	air	
and	the	coal’s	moisture	were	included	in	the	compositions	of	the	RFG	flow	shown	in	
Table	3.		
	
During	the	experimental	campaign,	radiative	heat	flux	was	measured	through	the	
center	port	of	sections	1,	2,	and	3	using	a	narrow-angle	radiometer.	A	cold	plate	
serving	as	a	heat	flux	gauge	was	installed	in	the	port	opposite	from	the	radiometer	
to	measure	total	heat	flux	to	the	wall	and	to	provide	a	known	boundary	condition	
for	the	radiometer	measurements.	In	practice,	the	cold	surface	became	coated	with	
radiating	particles,	introducing	uncertainty	into	the	radiometer	measurement.	Mass	
flow	rates	and	inlet/outlet	temperatures	of	the	water	flowing	through	the	cold	plate	
heat	flux	gauges	were	recorded.	Mass	flow	rates	and	inlet/outlet	temperatures	of	
the	water	flowing	through	the	cooling	tubes	were	measured	as	well.		
	
“Wall”	temperature	measurements	were	taken	in	sections	1,	2,	3,	4,	6,	7	and	8	using	
Type	B	thermocouples	encased	in	ceramic	sheaths	that	were	then	inserted	into	
small	holes	in	the	furnace	ceiling	located	in	the	middle	of	each	section	(see	Figure	4).	
Each	sheath	was	inserted	until	it	was	flush	with	the	inside	wall	of	the	furnace.		
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Figure	4:	Thermocouple	placement	in	furnace	wall.	Section	4	is	shown	but	the	
placement	is	similar	for	all	thermocouple	measurements.	

	
In	scoping	simulations,	it	was	determined	that	simulation	results	(specifically	
radiative	heat	flux	and	wall	temperatures)	were	not	sensitive	to	the	shell	
temperature	of	the	furnace.	Therefore,	constant	values	were	used	for	each	of	the	
four	sides	of	the	furnace.	Table	4	presents	the	values	of	shell	temperature	used	in	
the	simulations.	
	
Table	4.	Shell	temperatures	averaged	over	all	measurements	made	on	a	side.	
	

Location	 Shell	Temperature	(K)	
Quarl		 434	
Main	chamber	south	side	 362	
Main	camber	north	side		 396	
Main	chamber	bottom	side	 362	
Main	chamber	top	side	 427.2	

	
2.6 Heat	Removal	by	the	Cooling	Tubes	

	
Figure	6	shows	the	heat	removed	by	cooling	tubes	1	and	2	(both	in	section	1)	as	a	
function	of	time	during	the	last	day	of	the	experiment.	The	quantity	of	heat	removed	
generally	decreased	until	the	burner	was	switched	from	0%	to	100%	swirl	
(represented	by	the	vertical	black	line	at	109	hours	in	the	figure).	After	the	brief	
jump	with	the	change	in	swirl,	the	heat	removal	continued	its	general	decline.	This	
behavior	was	due	to	ash	deposition	on	the	cooling	tube	surface.	However,	
sometimes	the	heat	removal	increased,	which	could	have	been	due	to	ash	material	
falling	from	the	tubes.	Figure	7	shows	a	photo	of	one	set	of	cooling	tubes	after	the	
experiment.	In	this	photo,	it	can	be	seen	that	the	ash	layer	on	the	tubes	is	not	
uniform	and	there	are	some	locations	where	the	ash	material	has	fallen	off.			
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Figure	5:	Heat	removal	by	cooling	tubes	1	and	2.	The	vertical	line	represents	the	
point	where	operating	conditions	were	switched	from	0%	swirl	to	100%	swirl.	
	

	
Figure	6:	Cooling	tubes	after	the	experiment.		
	
Heat	removal	by	the	cooling	tubes	is	an	important	parameter	that	ideally	would	be	
computed	and	then	compared	to	experimental	values	as	part	of	the	VUQ	analysis.	
However,	Arches	does	not	currently	have	a	model	to	compute	ash	deposition	and	
the	resultant	changes	in	emissivity	and	conductivity	of	the	cooling	tubes.	
Additionally,	ash	deposition	is	a	slow	process	in	comparison	with	an	LES	simulation.	
A	preliminary	simulation	was	run	assuming	clean	tubes.	However,	temperature	and	
heat	flux	profiles	from	the	simulation	did	not	agree	with	the	experimental	values.	
Therefore,	it	was	decided	that	heat	removal	by	the	cooling	tubes	would	be	used	as	
an	input	parameter	instead	of	an	output.	
	
To	include	the	heat	removed	as	an	input	parameter,	an	energy	balance,	given	in	
equation	(9),	was	performed	on	each	set	of	cooling	tubes.	Equation	(9)	assumes	a	
constant	heat	removal	along	the	length	of	each	set	of	cooling	tubes.	The	parameter	
R,	defined	in	equation	(5),	was	computed	using	equation	(10).	The	value	for	qremoval,	
the	total	heat	removal	for	a	set	of	tubes,	was	obtained	from	the	experimental	data.	
Since	the	diameter	of	the	tubes	was	equal	to	the	cell	size,	this	value	was	divided	by	
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the	total	number	of	cells	representing	each	set	of	tubes	in	the	computational	domain	
to	obtain	the	heat	removal	per	cell.		

                                                    	
                                                           𝑅 𝑇! − 𝑇!!!""  = 𝑞!"#$%&' 																																													(9)	
	
																																																													𝑅 = !!"#$%&'

!!!!!!!"" 
                                                               (10) 	

	
Because	the	parameter	R	(a	strong	function	of	ash	deposition	along	the	entire	tube	
length)	was	not	controlled	in	the	experiment,	experimental	data	from	a	small	
window	in	time	were	used	for	the	VUQ	analysis.	By	choosing	a	small	window,	the	
ash	layer	on	the	cooling	tubes	was	assumed	to	be	constant	and	R	was	computed	
using	equation	(10).	For	future	studies,	this	parameter	will	be	included	as	one	of	the	
variable	parameters	in	the	VUQ	analysis.	
	

2.7 Quantities	of	Interest	for	the	VUQ	Analysis	
	
As	noted	previously,	the	QOIs	for	this	study	were	“wall”	temperatures	measured	by	
thermocouples	in	sections	1,	2,	3,	4,	and	6	and	radiative	heat	flux	measured	by	the	
narrow-angle	radiometer	in	sections	1,	2,	and	3.	These	data	were	used	in	the	VUQ	
analysis	that	follows.	
	

2.8 Description	of	VUQ	Approach	
	
The	VUQ	methodology	employed	for	this	study	was	a	consistency	measure	analysis	
referred	as	bounds	to	bounds	consistency.	This	methodology	was	developed	by	
Michael	Frenklach	and	Andrew	Packard	at	the	University	of	California	Berkeley	[3].	
The	basic	concept	of	this	consistency	analysis	boils	down	to	comparing	modeling	
outputs	with	experimental	data	using	equation	(11).	In	equation	(11),	the	
discrepancy	𝑢!  between	the	model	data	(𝑦!,! 𝒙 )	and	the	experimental	data	(𝑦!)	is	
computed.	If	𝑢!  	is	lower	than	the	error	in	the	experimental	measurement,	the	
simulation	and	experimental	data	are	consistent.	If	the	data	are	not	consistent,	the	
simulation	scientist	must	reassess	whether	the	models	and	model	parameter	ranges	
are	appropriate	for	the	system	being	studied	and	the	experimentalist	must	
reevaluate	the	experimental	methods	and	data	to	see	if	there	are	unaccounted	for	
errors	that	might	increase	the	uncertainty	in	the	measurement.	As	discussed	in	
Section	3,	identifying	regions	of	consistency	may	help	reduce	the	uncertainty	in	the	
parameter	space.	
	

𝑦!,! 𝒙 − 𝑦! ≤ 𝑢! 																																																							(11)	
	
3 VUQ	Results	
		
Here,	the	consistency	analysis	is	applied	to	thermocouple	and	radiometer	
measurements.	In	order	to	compare	experimental	data	and	simulation	data,	
instrument	models	for	the	thermocouple	and	the	radiometer	were	devised.		
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Two	kinds	of	instrument	models	must	be	considered.	First	is	a	simulation	
instrument	model	that	takes	data	from	the	simulation	and	returns	the	QOI.	New	
variables	can	be	added	to	the	simulation	instrument	model	in	order	to	capture	
details	that	were	not	accounted	in	the	simulation.	Second	is	an	experimental	
instrument	model	that	takes	the	raw	data	collected	by	the	measurement	device	such	
as	an	electrical	signal	or	a	pixel	and	uses	it	to	compute	the	QOI.	This	model	is	known	
as	calibration	and	it	can	be	used	to	better	determine	the	bias	error	in	the	
experiment.	In	order	to	perform	a	consistency	analysis,	both	instrument	models	
need	to	compute	the	same	QOI.		
	

3.1 Temperature	Measurement	Analysis	
	

3.1.1 Simulation	Instrument	Model	
	
The	simulation	instrument	model	for	the	thermocouple	in	the	ceramic	sheath	was	
shown	schematically	in	Figure	4.	In	the	instrument	model,	the	energy	equation,	
equation	(12),	was	solved	for	𝑇!" , the	temperature	that	would	be	measured	by	the	
thermocouple	shown	in	Figure	5	given	the	simulated	conditions	of	the	furnace.	The	
value	for	𝑇!" 	is	then	directly	comparable	to	the	thermocouple	temperature	
measured	experimentally.		
	
															𝜀!" 𝑞!"#!$%"& − 𝜎𝑇!"! + !

!
𝑇!" − 𝑇!!!""  + ℎ 𝑇!"# − 𝑇!" = 0																									(12)	

	
For	a	given	case,	the	incident	radiation	𝑞!"#!$%"&	and	the	gas	temperature	𝑇!"#	in	
equation	(12)	were	obtained	from	the	simulation	by	extracting	data	at	the	
thermocouple’s	location	and	averaging	the	data	over	two	seconds.		The	thermal	
resistance	!

!
	of	the	thermocouple	was	obtained	from	product	literature.	The	value	of	

𝑇!!!"" 	was	obtained	from	Table	4	for	the	“Main	chamber	top	side.”	The	heat	transfer	
coefficient	h	was	set	to	4.0	 !

!!∙!
.	Because	the	surface	emissivity	𝜀!" 	had	a	strong	

effect	on	measured	temperature,	it	was	varied	between	0–1	in	the	instrument	
model.	With	all	these	values	set,	equation	(12)	was	used	to	solve	for	𝑇!" .	This	
process	was	repeated	using	results	from	each	of	the	eight	simulations	presented	in	
Table	1.	
	
3.1.2 Uncertainty	in	Experimental	Measurements	
	
There	are	two	types	of	error	in	experimental	measurements:	random	error	and	bias	
error.	The	random	error	can	be	estimated	based	on	replicate	measurements	while	
an	experimental	instrument	model	is	needed	to	better	understand	the	bias	error.	No	
experimental	instrument	model	was	available	for	the	“wall”	thermocouple	
measurements,	so	the	random	and	bias	errors	were	estimated	in	the	following	way.	
First,	the	experimental	data	were	averaged	over	a	five-minute	window;	the	
computed	standard	deviation	was	a	measure	of	random	error.	.	The	random	error	in	
the	thermocouple	measurements	was	approximated	from	the	scaled	standard	
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deviation	for	a	five-minute	window,	assuming	a	distribution	for	the	error	and	a	90%	
confidence	interval.	For	the	bias	error	in	the	first	three	locations	in	this	simplistic,	
empirically-based	instrument	model,	the	scaling	factor	was	30.	For	the	last	two	
locations,	the	scaling	factor	was	60.	The	factor	was	applied	because,	based	on	
experience,	the	random	errors	in	the	thermocouple	measurements	were	not	
reflected	in	the	measured	standard	deviations	of	1	K.	Also,	without	a	larger	
experimental	error	range,	there	was	no	consistency	between	experimental	and	
simulation	data.	The	factor	was	larger	for	the	last	two	points	because	those	
thermocouples	were	not	calibrated	prior	to	the	experimental	campaign.		
	
3.1.3 Surrogate	Model	Development	

	
Three	dimensional	surfaces	(e.g.	surrogate	models)	for 𝑇!"#	and	𝑞!"#!$%"& were	
constructed	with	a	Gaussian	Process	[10]	using	the	data	obtained	from	the	eight	
simulations.		The	set	of	surrogate	models	created	for	𝑇!"#	is	shown	in	Figure	8,	one	
for	each	section.	The	measurement	location	in	each	section	was	the	middle	of	the	
ceiling.	The	black	dots	in	the	plots	are	the	𝑇!"#values	from	the	eight	simulations.	
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Figure	7:	Gas	temperature	at	five	different	positions	on	the	ceiling	of	the	L1500.	The	
black	dots	correspond	to	simulation	data;	the	surface	represents	the	surrogate	
model.	
	
The	behavior	of	the	two	parameters	is	similar	for	sections	1,	3,	4	and	5	but	is	
different	for	section	2.	This	behavior	may	be	related	to	the	recirculation	patterns	
present	in	section	2.	From	this	figure,	it	can	be	seen	that	the	gas	temperature	
increases	as		!

!
		increases	because	the	heat	lost	through	the	wall	is	decreasing.	The	

gas	temperature	also	increases	with	𝑣!!" ,	but	the	surface	in	section	2	has	an	odd	
maximum,	possibly	due	to	recirculation.	
	
3.1.4 Uncertainty	Ranges	
	
Figure	9	shows	the	simulation	and	experimental	data	with	their	associated	
uncertainty	ranges	at	the	five	measurement	locations.	For	a	given	location	and	case	
(e.g.	𝑞!"#!$%"&	and 𝑇!"#	fixed),	the	range	in	the	thermocouple	temperature	(±100𝐾)	
results	from	varying	𝜀!" 	from	0.2	to	1.0.	For	a	given	location	considering	all	cases,	
the	overall	range	of	computed	temperatures	(±500𝐾)	is	determined	by	varying	
𝑞!"#!$%"&	and	 𝑇!"#.	Since	the	instrument	model	shown	in	equation	(12)	is	most	
sensitive	to	𝑞!"#!$%"&	and	 𝑇!"#	which	are	functions	of		

!
!

 and	𝑣!!" ,	the	three	
parameters	explored	with	the	thermocouple	instrument	model	in	the	VUQ	analysis	
were		!

!
	,	𝑣!!" ,	and		𝜀!" .	Figure	9	presents	the	range	of	temperatures	values	obtained	

at	each	location	by	varying	these	three	parameters.	Also	shown	in	the	figure	are	the	
experimental	data	averaged	over	a	five-minute	window	with	the	range	determined	
by	the	maximum	and	minimum	values	of	the	temperature	in	that	window.	
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Figure	8:	Thermocouple	temperature	at	five	positions	along	the	L1500.	The	
simulation	error	bars	correspond	to	emissivities	of	1	and	0.2	for	the	eight	cases	
presented	in	Table	1.	The	red	line	corresponds	to	the	experimental	data.		
	

3.2 Radiometer	Measurement	Analysis	
	

3.2.1 Simulation	Instrument	Model	
	
A	narrow-angle	radiometer	was	used	to	measure	the	radiative	heat	flux	in	sections	
1,	2	and	3	in	the	L1500.	The	simulation	instrument	model	for	the	radiometer	used	a	
reverse-Monte	Carlo	ray	tracing	approach	to	compute	the	radiative	heat	flux	by	
summing	up	the	radiative	intensities	over	all	the	rays	comprising	the	field	of	view	of	
the	radiometer	as	seen	in	equation	(13).	The	radiative	intensity	in	each	solid	angle,	
𝐼! 	was	computed	with	equation	(14).	For	this	analysis,	𝑁! = 1.		
	
																																														𝑞 = 𝑠𝑜𝑙𝑖𝑑_𝑎𝑛𝑔𝑙𝑒 !

!!
𝐼!𝑐𝑜𝑠𝜃!

!!
!!! 																																												(13)	

	
																																						𝐼!!! = 1− exp −𝑘!!!∆𝑥 𝐼! + exp −𝑘!!!∆𝑥 𝐼! 																						(14)	
	
																																																																								𝐼! =

!!!"#!

!
 																																																												(15)	

	
In	order	to	compute	the	radiative	intensity	with	equation	(14),	the	gas	temperature	
𝑇!"#	and	the	gas	absorption	coefficient	𝑘!!!	were	obtained	from	the	simulations.	
These	two	parameters	were	extracted	along	one	ray	that	extended	from	the	wall	
opposite	the	radiometer	to	the	radiometer	lens.	
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Ash	buildup	on	the	cooled	targets	flush	with	the	walls	opposite	the	radiometers	
resulted	in	a	surface	condition	that	was	unknown.	To	compute	𝐼! ,	the	intensity	of	
the	target,	the	wall	temperatures	from	the	simulation	was	used;	see	equation	(16).	
The	emissivities	of	the	surfaces,	𝜀!"#$_!"#$%! ,	were	taken	as	three	unknown	
parameters	for	a	total	of	five	parameters	in	the	radiometer	instrument	model.	
																																																													𝐼! = 𝜀!"#$_!"#$%!

!!!"##
!

!
																																															(16)	

	
3.2.2 Uncertainty	in	Experimental	Measurements	
	
To	perform	the	consistency	analysis,	the	average	values	and	uncertainty	of	the	
experimental	data	were	required	which	is	the	random	error,	it	was	computed	
following	the	same	procedure	that	in	the	thermocouple	random	error.	All	of	the	
averages	were	computed	over	a	five-minute	window.	The	uncertainty	of	the	
radiometer	measurements	was	approximated	from	an	analysis	of	the	radiometer	
calibration	data	with	a	black	body;	this	uncertainty	was	considered	to	be	a	result	of	
bias	error.		
	
Figure	10	compares	the	experimental	radiometer	measurements	(points	connected	
by	the	dotted	line)	with	the	results	from	the	eight	simulation	cases	in	this	study.	For	
the	simulation	data,	the	maximum	values	correspond	to	the	case	where	the	
emissivity	of	the	cooled	target	was	assumed	to	be	1	and	the	wall	temperature	was	
equal	to	the	simulated	wall	temperature.	The	minimum	values	correspond	to	the	
case	where	the	emissivity	was	0.		
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Figure	9:	Comparison	of	experimental	and	simulation	radiative	heat	flux	
measurements	in	sections	1,	2,	and	3	of	the	L1500.		
	

3.3 Consistency	Analysis	for	the	Thermocouple	and	Radiometer	Measurements	
	
A	consistency	analysis	(described	in	Section	2.8)	was	performed	using	the	
thermocouple	temperature	and	the	radiative	heat	flux	measurements	as	QOIs	and	!

!
	,	

𝑣!!" ,	and	the	instrument	model	emissivities,	𝜀!"/𝜀!"#$_!"#$%! ,	as	parameters.	The	
combined	dataset	included	five	thermocouple	and	three	radiometer	measurements	
for	a	total	of	eight	QOIs.	The	total	number	of	parameters	is	six	(!

!
	,	𝑣!!" ,	𝜀!" ,	

𝜀!,!"#$_!"#$%! ,	𝜀!,!"#$_!"#$%! ,	𝜀!,!"#$_!"#$%!),	two	from	the	simulation	and	four	from	the	
instrument	models.		
The	instrument	models	for	the	thermocouple	and	for	the	radiometer	were	used	to	
produce	64	cases	using	the	original	eight	cases	presented	in	Table	1	and	eight	
emissivity	values	between	0.0	and	1.0	for	each	of	the	four	emissivity	parameters.		To	
test	for	consistency,	a	surrogate	model	for	each	QOI	was	created	using	a	Gaussian	
Process	with	the	64	cases	and	the	six	parameters.	These	surrogate	models	were	
then	used	in	the	consistency	analysis.			
	
Table	5	lists	the	experimental	data	averages	and	uncertainty	ranges	used	in	the	
consistency	analysis.	Using	these	inputs	and	the	surrogate	model	previously	
described,	an	initial	Monte-Carlo	sampling	of	the	parameter	space	was	made	with	
10,000	points	to	find	a	consistent	region.	This	consistent	region	was	then	sub-
sampled	with	an	additional	10,000	points	to	better	identify	its	shape.	The	results	of	
the	analysis	are	presented	in	Figure	11(a)	for	the	thermocouple	measurements	and	
Figure	11(b)	for	the	radiometer	measurements.	The	figure	includes	the	uncertainty	
ranges	for	the	simulation	data	and	the	experimental	data	as	well	as	the	consistent	
region	between	the	two	datasets.	The	uncertainty	range	for	the	simulation	is	large	
due	to	the	size	of	the	parameter	space	that	was	explored.	The	parameter	range	was	
chosen	to	be	large	in	order	to	encompass	all	the	experimental	data	within	the	
uncertainty	of	the	simulation	outputs.	By	requiring	consistency	between	the	
experiment	and	simulation,	the	uncertainty	range	is	greatly	reduced	for	both	
datasets.	
	
Table	5.	Inputs	to	the	consistency	analysis	from	the	experimental	data.		
	

QOI	 Average	
Value	

Uncertainty	 Units	

Radiometer	1	 63.76	 8.98	 [W/m2]	
Radiometer	2	 89.59	 9.74	 [W/m2]	
Radiometer	3	 88.66	 11.11	 [W/m2]	
Thermocouple	1	 1319.38	 83.65	 [K]	
Thermocouple	2	 1491.52	 161.93	 [K]	
Thermocouple	3	 1484.35	 78.20	 [K]	

Jennifer Spinti� 2/25/2016 10:39 PM
Deleted: 10



19	

Thermocouple	4	 1399.27	 138.71	 [K]	
Thermocouple	5	 1373.11	 73.30	 [K]	

	
	
	

a)	
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b)	
Figure	10:	Results	of	consistency	analysis:	(a)	Thermocouple	measurements,	(b)	
radiometer	measurements.	
	
Figure	12	shows	the	region	of	parameter	space	(“consistent	sample”)	where	
consistency	is	achieved	with	experimental	and	simulation	data.	In	these	plots	the	
color	of	each	point	is	a	normalized	value	of	the	discrepancy	(𝑢! 	in	equation	(11)).	
The	boxes	represent	the	bounds	of	the	parameter	space	containing	the	consistent	
region.	While	the	parameter	space	has	been	reduced	compared	to	the	original	
parameter	space	(represented	by	the	axes	of	the	grid),	some	of	the	parameter	
ranges	are	still	large.	For	example,	the	original	range	for	𝜀!" 	was	reduced	from	0–1	
to	0.4–1.	There	are	also	strong	correlations	between	some	of	the	parameters	such	as	
!
!
	and	𝜀!" 	in	Figure	12(b).		
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a)	

b)	
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c)	

d)	
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e)	
	
Figure	11:	Consistent	space	for	thermocouple	and	radiometer	measurements.	(a)	!

!
	

and	𝑣!!" 	for	all	emissivities,	(b)	)	
!
!
,	𝑣!!" 	and	𝜀!" ,	(c)	

!
!
	,	𝑣!!" 	and	𝜀!,!"#$_!"#$%! ,	(d))	

!
!
	,	

𝑣!!" 	and	𝜀!,!"#$_!"#$%! .,	and	(e)	
!
!
	,	𝑣!!" 	and	𝜀!,!"#$_!"#$%! .	

	
Table	6	presents	the	new	uncertainty	bounds	for	the	six	parameters	resulting	from	
the	consistency	analysis.	The	range	for	𝑣!!" 	does	not	change,	that	of	

!
!

 is	reduced	
from	0.1–0.4	to	0.14–0.30,	𝜀!" 	and	𝜀!,!"#$_!"#$%!have	similar	ranges,	and	the	ranges	of	
𝜀!,!!"#_!"#$%!		and	𝜀!,!"#$_!"#$%!	are	really	low.	
	
Table	6.	Consistent	parameter	ranges	found	using	uncertainties	from	Table	5.	
	

Parameter Minimum Maximum 
𝑣!!" 0.545 0.900 
!
!
	 0.139 0.306 

𝜀!" 0.320 1.00 
𝜀!,!"#$_!"#$%! 0.352 0.990 
𝜀!,!"#$_!"#$%! 0.00133 0.341 
𝜀!,!"#$_!"#$%! 0.00565 0.203 

	
The	consistency	region	depends	of	the	error	bounds	used	in	equation	(11).	
However,	the	errors	in	the	thermocouple	measurement	are	not	well	known.	In	order	
to	see	the	impact	of	the	thermocouple	error	on	the	size/shape	of	the	consistency	
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region	in	Figure	12,	the	uncertainty	range	shown	in	Table	5	was	reduced	for	
thermocouples	1,	2,	and	3.	For	these	first	three	locations,	the	scaling	factor	applied	
to	the	standard	deviation	was	reduced	from	30	to	15	based	on	calibration	data.	The	
scaling	factor	of	60	used	for	the	last	two	locations	was	not	reduced	due	to	the	lack	of	
calibration	data.	The	new	uncertainty	bounds	are	given	in	Table	7.	
	
Table	7.	Inputs	to	the	consistency	analysis	with	reduced	uncertainty	range	for	
thermocouples	1,	2,	and	3.	
	

QOI	 Average	
Value	

Uncertainty	 Units	

Radiometer	1	 63.76	 8.98	 [W/m2]	
Radiometer	2	 89.59	 9.74	 [W/m2]	
Radiometer	3	 88.66	 11.11	 [W/m2]	
Thermocouple	1	 1319.38	 41.83	 [K]	
Thermocouple	2	 1491.52	 80.96	 [K]	
Thermocouple	3	 1484.35	 39.09	 [K]	
Thermocouple	4	 1399.27	 138.71	 [K]	
Thermocouple	5	 1373.11	 73.30	 [K]	

	
Figure	13	and	Figure	14	show	the	new	bounds	and	consistent	space	based	on	the	
inputs	in	Table	7.	Reducing	the	uncertainty	by	a	factor	of	two	for	three	of	the	eight	
QOIs	reduced	the	consistent	region	to	a	small	fraction	of	the	original	space	for	all	six	
parameters.	The	consistent	space	clearly	depends	very	strongly	on	the	error	in	the	
thermocouple	measurements.	The	reduced	parameter	ranges	associated	with	this	
analysis	are	given	in	Table	8.	
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a)	

b)	
Figure	12:	Results	of	consistency	analysis:	(a)	Thermocouple	measurements,	(b)	
radiometer	measurements.	
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a)	

b)	
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c)	

d)	
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e)	
	
Figure	13:	Consistent	space	for	thermocouple	and	radiometer	measurements.	(a)	!

!
	

and	𝑣!!" 	for	all	emissivities,	(b)	
!
!
,	𝑣!!" 	and	𝜀!" ,	(c)	

!
!
	,	𝑣!!" 	and	𝜀!,!"#$_!"#$%! ,	(d)		

!
!
	,	

𝑣!!" 	and	𝜀!,!"#$_!"#$%! .,	and	(e)	
!
!
	,	𝑣!!" 	and	𝜀!,!"#$_!"#$%! .	

	
Table	8.	Consistent	parameter	ranges	found	using	uncertainties	from	Table	7.	
	

Parameter Minimum Maximum 
𝑣!!" 	 0.761	 0.841	
1
𝑅 0.240	 0.265	
𝜀!" 	 0.402	 0.440	

𝜀!,!"#$_!"#$%!	 0.429	 0.474	
𝜀!,!"#$_!"#$%!	 0.0602	 0.0665	
𝜀!,!"#$_!"#$%!	 0.105	 0.116	

	
The	consistency	analysis	shows	some	interesting	results.	First,	the	𝑣!!" 	parameter	
has	a	weaker	effect	than	the	other	five	parameters.	Second,	𝜀!,!"#$_!"#$%!		and	
𝜀!,!"#$_!"#$%!	values	are	very	low.	Therefore,	the	contribution	of	the	radiation	flux	
from	the	wall	is	small	for	sections	2	and	3	with	the	major	radiation	contribution	
coming	from	the	gas.	
			
The	consistency	analysis	presented	above	shows	that	the	instrument	models	for	the	
simulation	and	experimental	data	are	of	extreme	importance	for	the	analysis.	
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Calculation	of	the	error	in	the	experimental	measurement	is	a	key	factor	in	the	
above	analysis;	thus,	an	experimental	instrument	model	that	can	calculate	these	
errors	is	need.	In	the	heat	flux	measured	by	the	radiometer,	a	detailed	analysis	is	
necessary	on	the	device	and	an	experimental	instrument	model	with	physical	bases	
that	accounts	for	its	geometry	and	its	optical	components	needs	to	be	developed.	
Such	a	model	will	provide	a	better	estimate	of	the	bias	error.	For	the	wall	
temperature	measurement,	a	more	detailed	and	fundamentally-base	model	for	the	
thermocouple	is	needed;	the	current	model’s	parameters	have	large	uncertainties	
and	they	control	the	analysis,	minimizing	the	impact	of	the	parameters	in	the	LES	
simulation.		In	future	analyses,	better	instrument	models	for	experimental	and	
simulation	data	need	to	be	developed.	
	
4. Conclusions	
	
A	VUQ	analysis	using	a	consistency	method	was	used	to	study	experimental	and	
simulation	data	from	an	oxy-coal	fired	furnace.	The	dataset	included	eight	QOIs:	five	
thermocouple	measurements	and	three	radiometer	measurements.	Two	simulation	
parameters	were	chosen	for	the	analysis:	a	scenario	parameter,	!

!
,	representing	heat	

transfer	through	the	wall	of	the	furnace	and	a	model	parameter,	𝑣!!" ,	which	
represents	the	…….	In	order	to	compare	the	experimental	and	simulation	data	for	
the	eight	QOIs,	it	was	necessary	to	develop	two	simulation	instrument	models.	For	
these	instrument	models,	four	additional	parameters	were	studied:	the	emissivity	of	
the	wall	thermocouple,	𝜀!" ,	and	the	emissivities	of	the	cold	targets	opposite	the	
radiometers,	𝜀!,!"#$_!"#$%! ,	𝜀!,!"#$_!"#$%! ,	and	𝜀!,!"#$_!"#$%! .	Based	on	this	analysis,	it	
was	concluded	that	𝑣!!" 	has	the	weakest	effect	on	the	QOIs	of	the	six	parameters	
tested.	In	the	case	of	the	parameters	𝜀!,!"#$_!"#$%! ,	and	𝜀!,!"#$_!"#$%! ,	low	values	of	
emissivity	were	obtained,	which	means	that	the	contribution	of	the	wall	to	the	
overall	radiometer	measurement	is	low	and	that	most	of	the	radiation	comes	from	
the	gas.	These	low	values	also	indicate	that	there	was	not	much	ash	deposition	on	
the	cooled	targets.	The	similarity	in	emissivities	of	the	wall	thermocouples,	𝜀!" ,	and	
the	cold	target	in	section	1,		𝜀!,!"#$_!"#$%! ,	could	be	due	to	the	surfaces	on	the	cold	
target	and	on	the	wall	thermocouple	being	covered	with	a	similar	particle	material		
	
For	the	next	experimental	campaign,	the	cold	targets	will	be	removed	and	replaced	
with	holes	to	remove	the	impact	of	the	target	on	the	measured	heat	flux.	This	change	
will	simplify	the	analysis.	Also,	because	of	the	large	sensitivity	of	the	consistent	
region	to	the	uncertainty	range	for	thermocouple	measurements	in	sections	1,	2,	
and	3,	a	different	method	with	better-quantified	errors	will	be	used	to	measure	the	
wall	temperatures.		Finally,	work	has	begun	on	developing	better	experimental	and	
simulation	instrument	models	for	the	radiometer	and	the	“wall”	thermocouples.	The	
main	objective	is	to	calculate	the	bias	error	and	to	improve	our	understanding	of	the	
experimental	measurements.	
	
5.	 References	
	



30	

[1]	 A.	Fry,	J.	Spinti,	I.	Preciado,	O.	Diaz-ibarra,	and	E.	Eddings,	“Pilot-scale	
Investigation	of	Heat	Flux	and	Radiation	from	an	Oxy-coal	Flame,”	in	American	
Flame	Research	Committee	International	Symposium,	2015,	no.	801.	

[2]	 T.	Fletcher,	A.	Kerstein,	R.	J.	Pugmire,	M.	Solum,	and	D.	M.	Grant,	“A	chemical	
percolation	model	for	devolatilization:	summary,”	…	Rep.	SAND92-8207,	pp.	1–
66,	1992.	

[3]	 B.	B.	Schroeder,	“Scale-bridging	model	development	and	increased	model	
credibility,”	The	University	of	Utah,	2015.	

[4]	 J.	S.	Justin	Luitjens,	John	Schmidt,	Alan	Humphrey,	J.	Davison	de	St.	Germain,	
Todd	Harman,	Jim	Guilkey,	Charles	Reid,	Dan	Hinckley,	Jeff	Burghardt,	John	M.	
Schreiner,	Joseph	Peterson,	Jeremy	Nicholas	Thornock,	Brian	Leavy,	Qingyu	
Meng,	Jennifer	Spinti,	Chuck	W,	“http://www.uintah.utah.edu/.”	[Online].	
Available:	http://www.uintah.utah.edu/.	

[5]	 J.	Pedel,	J.	N.	Thornock,	and	P.	J.	Smith,	“Ignition	of	co-axial	turbulent	diffusion	
oxy-coal	jet	flames:	Experiments	and	simulations	collaboration,”	Combust.	
Flame,	vol.	160,	no.	6,	pp.	1112–1128,	2013.	

[6]	 J.	J.	Murphy	and	C.	R.	Shaddix,	“Combustion	kinetics	of	coal	chars	in	oxygen-
enriched	environments,”	Combust.	Flame,	vol.	144,	no.	4,	pp.	710–729,	Mar.	
2006.	

[7]	 J.	Ahn,	R.	Okerlund,	A.	Fry,	and	E.	G.	Eddings,	“Sulfur	trioxide	formation	during	
oxy-coal	combustion,”	Int.	J.	Greenh.	Gas	Control,	vol.	5,	pp.	S127–S135,	2011.	

[8]	 A.	Fry,	B.	Adams,	K.	Davis,	D.	Swensen,	S.	Munson,	and	W.	Cox,	“An	
investigation	into	the	likely	impact	of	oxy-coal	retrofit	on	fire-side	corrosion	
behavior	in	utility	boilers,”	Int.	J.	Greenh.	Gas	Control,	vol.	5,	pp.	S179–S185,	
2011.	

[9]	 “http://www.icse.utah.edu/multifuel-furnace/.”	.	

[10]	 C.	E.	Rasmussen	and	C.	K.	I.	Williams,	Gaussian	processes	for	machine	learning.	
2006.		

 


