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This paper presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial

differential equations for transport phenomena on multiple architectures. Application programmers use

Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently

Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution.

With single-thread execution, Nebo performs on par with code written by domain experts. With multi-

thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its

single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-

thread execution.

© 2016 Elsevier Inc. All rights reserved.
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. Introduction

To avoid inefficiencies, most high-performance computing

HPC) code is written at a very low level. However, with the rise

f new architectures, such as multi-core CPUs and GPUs existing

ode must be rewritten for each new architecture, which is a labor-

ntensive and error-prone process that also creates a maintenance

hallenge.

This paper describes Nebo, an efficient domain-specific lan-

uage (DSL) embedded in C++1, the purpose of which is to en-

ble domain experts to create code that is efficient, scalable, and

ortable across multiple architectures. Nebo is a declarative DSL

or numerically solving partial differential equations for transport

henomena such as computational fluid dynamics on structured

eshes. The fundamental unit of variable abstraction in Nebo is

field, which represents the value of a variable at all points on

he mesh.

Nebo was designed for use in high-performance simulation

rojects such as Wasatch, which is a component within the Uintah

erzins et al. (2012); Parker (2002); Berzins et al. (2010) frame-

ork and has demonstrated scalability to 262,000 cores Schmidt

t al. (2013a). Wasatch is a code for convection–diffusion–reaction

roblems, and focuses on turbulent reacting flow simulations using
∗ Corresponding author. Tel.: +19254237697.

E-mail addresses: earl2@llnl.gov (C. Earl), might@cs.utah.edu (M. Might),

bb58@pitt.edu (A. Bagusetty), James.Sutherland@utah.edu (J.C. Sutherland).
1 Nebo targets the 1998 standard of C++.
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arge eddy simulation. Uintah is a set of libraries and applications

or simulating and analyzing complex chemical and physical reac-

ions. While this paper discusses Nebo’s use in Wasatch, Nebo is a

tand-alone library and is used in other projects (see, e.g., Punati

t al. (2011)). Nebo handles data parallelism but leaves memory

anagement and data transfers between CPU and GPU either to a

ramework or to the end user. Both Wasatch and Uintah provide

sers with easy to use options to manage memory and data trans-

ers. If Nebo is used outside of Wasatch and Uintah, either users

an manage these tasks themselves or use other software support

or them.

Because many current HPC codes are written in C++, Nebo is

mbedded within C++ to allow incremental adoption; when Nebo

acks needed functionality, domain experts are able to prototype

he code natively in C++. Then, when new Nebo functionality be-

omes available, domain experts rewrite code in Nebo that is more

exible and easier to maintain than the original. Our experience is

hat code that uses Nebo is frequently more efficient than the code

and-written by the domain experts, and can be deployed on both

PU and GPU. Furthermore, since Nebo and the existing applica-

ion code are both written in C++, refactoring existing C++ code

nto Nebo syntax is relatively straightforward.

To simultaneously achieve expressiveness, efficiency and porta-

ility, Nebo separates what computation should be performed

rom how that computation should be done. Nebo has a restrictive

eclarative syntax so that the computation can be represented

s an abstract syntax tree (AST) within the C++ template system.

rom the AST representing the Nebo calculation, Nebo generates
portable domain-specific language for numerically solving partial
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efficient code for a variety of backend implementations. Nebo

supports three major backends: A single-thread (sequential) back-

end, a multi-thread backend, and a GPU-based backend. Moreover,

Nebo’s semantics are intensionally restricted, which limits what

can be computed within Nebo. For example, all Nebo code will

terminate because Nebo does not recurse and all loops in Nebo

iterate a fixed number of times (based upon runtime parameters).

Finally, Nebo calculations write results to a finite amount of muta-

ble memory a fixed number of times (once per Nebo assignment).

By avoiding Turing-Completeness, Nebo is focused and optimized

for its domain.

Additionally, Nebo is intentionally limited in its capabilities

for its domain: Nebo does not provide memory management,

task parallelism, or inter-node communication (such as MPI).

For these capabilities, Nebo is intended to be used with other

libraries/frameworks for HPC applications, such as the Uintah

Berzins et al. (2012); Parker (2002); Berzins et al. (2010) frame-

work.

Nebo’s single-thread backend performs at least as well as the

hand-written code it replaces. With computationally intensive cal-

culations, Nebo’s multi-thread backend can scale linearly to the

number of cores available, and Nebo’s many-core (GPU) backend

can perform 140 × faster than Nebo’s single-thread backend. With

less computationally intensive calculations, Nebo’s parallel back-

ends do not scale as well, mainly because of memory latency. That

said, practical uses of Nebo are computationally intensive enough

that these limits of Nebo rarely arise.

Nebo is available for download, as part of the Spa-

tialOps project, using git from: https://software.crsim.utah.edu:

8443/James_Research_Group/SpatialOps.git

Nebo’s most recent documentation can be built from the source

code using doxygen or viewed from: https://software.crsim.utah.

edu/jenkins/job/SpatialOps/doxygen/

After discussing Nebo’s syntax and semantics in Section 2,

Section 3 discusses the technical details of Nebo’s implementation.

Section 4 contains case studies of real uses of Nebo, which are

taken directly from Wasatch. This section also contains perfor-

mance results from these uses of Nebo for all of Nebo’s backends

as well as performance comparisons with other components of

Uintah.

2. Syntax and semantics of Nebo

This section explains Nebo’s syntax, semantics, and some infor-

mation about how specific features of Nebo are implemented. The

next section focuses on Nebo’s overall implementation and details

about how the backends work.

Because Nebo is a domain-specific (rather than general-

purpose) language for numerically solving PDEs in high-

performance simulations, Nebo’s syntax and semantics are limited

and it is not Turing complete. Each assignment statement in

Nebo is roughly analogous to a mathematical operation over

fields. A field is a one-, two-, or three-dimensional array, which is

explained in more detail in Section 2.1.

Because Nebo is embedded within C++ Stoustrup (1997), stan-

dard C++ compilers parse Nebo code without modification. We

view this as an advantage since C++ is ubiquitously supported on

high performance computing architectures and we can leverage ex-

isting compilers rather than developing and maintaining a sepa-

rate one. Because Nebo is limited to C++’s basic syntax, it uses

C++-style function call syntax, C++-style operator syntax, and only

the operators that can be overloaded within C++. Nebo also inher-

its syntax, operators, and operator precedence that is well-defined,

well-documented, and well-understood by C++ programmers. Fur-

thermore, Nebo maintains the semantic meaning of the operators

it overloads, lifted over fields. For example, addition of two fields
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
epresents the pointwise addition of the elements with those two

elds. The sole exception to Nebo maintaining the semantic mean-

ng of its overloaded operators is its assignment operator, which is

iscussed in Section 2.3.

The Nebo semantics define what calculation a Nebo Expression

enotes, but not the order of evaluation over all elements in the

esh. The calculation of a given Nebo Expression is the same for

ll valid elements in the fields involved. Because the semantics do

ot define an ordering, each backend may choose a different or-

er of execution that is specific to the targeted architecture. Nebo

s tuned to choose an order of execution that benefits the most

rom architecture-specific capabilities and that avoids synchroniza-

ion and communication. The details of the backends are discussed

n Section 3.2.

Readers familiar with MATLAB or Fortran90 array syntax will

ecognize similar patterns in Nebo’s syntax. Nebo uses fields as

ATLAB uses matrices and Fortran uses arrays: Expressions and

ssignments in Nebo can be calculated over fields, without need-

ng to provide indices or explicit loop structures.

The rest of this section is laid out as follows: Section 2.1

iscusses the definition and declaration of fields, Nebo’s array

ype. Section 2.2 discusses basic Nebo Expressions and operations.

ection 2.3 discusses Nebo assignment. Section 2.4 discusses con-

itional expressions within Nebo. Section 2.5 discusses stencil op-

rations in Nebo, which are the only way to perform nonpointwise

alculations in Nebo. Finally, Section 2.6 discusses Nebo reductions.

.1. Field definition and usage

A field is a structured three-dimensional array. One- and two-

imensional arrays can defined by setting the extents of the un-

sed dimensions to 1. To build a new field, the most basic infor-

ation required is a memory window, boundary cell information,

nd ghost cell information. Optionally, if the field is to be built us-

ng existing memory (allocated and initialized in non-Nebo code),

pointer to the memory can be provided. If a pointer to existing

emory is provided, a flag for external storage needs to be set, so

he field does not free the memory. Also, optionally, a device flag

defaults to CPU) can be set to specify where the memory should

e allocated (for internal allocation) or where the memory already

as allocated (for external allocation).

Each field represents a single quantity over an array of elements

hat can represent volumes or faces. Moreover, an single field may

epresent the entire simulation space, or it may only represent

ome partition of the simulation space.

Section 2.1.1 describes what a memory window is, what one

ontains, and how to create one. Section 2.1.2 describes what

oundary information is needed to create a field. Section 2.1.3 de-

cribes what boundary information is needed to create a field.

ection 2.1.4 describes how users can manage the memory of

elds across CPUs and GPUs. Additional information on fields and

heir components can be found in the documentation for Nebo,

hich can be found either in the source code or at the on-

ine documentation at: https://software.crsim.utah.edu/jenkins/job/

patialOps/doxygen/

.1.1. Memory windows

A memory window is a logical subset, or window, of array el-

ments. The elements within a memory window are logically ad-

acent but are not necessarily a single contiguous subarray of the

arger array. A memory window is made up of three components:

he global extents of the entire array, the offset to the first ele-

ent of the window, and the extents of the window itself. Each of

hese components is represented as an array of three integers.

The global extents represent number of elements in each di-

ension (x, y, and z) of the entire underlying contiguous allocated
portable domain-specific language for numerically solving partial

://dx.doi.org/10.1016/j.jss.2016.01.023
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lock of memory. The global extents are used by Nebo to deter-

ine where and how many elements to skip when iterating over

he elements of a memory window.

The offset represents the index (in x-, y-, and z-coordinates) of

he first element in the memory window. With the global extents

nd the offset together, Nebo can determine the flat (global) index

f the first element of the window.

The local extents represent the number of elements in each di-

ection that the window contains. With the global extents, offset,

nd local extents together Nebo can determine when to skip ele-

ents and how many to skip, when iterating over the elements of

he window.

.1.2. Boundary cells

Fields can represent different types of spatial values: Some rep-

esent quantities of volumes (temperature, mass, etc.); others rep-

esent quantities of the faces between volumes (flux, difference in

emperature, etc.). Fields can also represent staggered meshes, that

s structured meshes partially offset from one another. (More infor-

ation about the different types of fields can be found in Nebo’s

ocumentation.)

Boundary cells are extra cells on some meshes to finish out

eeded faces or volumes. For example, consider a field of faces

etween volumes, where the faces are normal to the x-direction

ignoring the faces normal to the y- and z-directions). By conven-

ion in Nebo, the negative face (the face on shared with the lower

ndex neighbor element) is associated with a volume and shares

ts index. The positive face (the face on shared with the higher in-

ex neighbor element) is associated with its neighbor volume and

hares its index. However, the volume with highest x-index by def-

nition has no neighbor on its positive side; however, that volume

till needs a positive face. To provide this extra face, boundary cells

re used.

Three boolean values are used to indicate whether or not a

esh has an extra boundary cell. (True indicates that an extra cell

s present.) Not all types of fields may need extra boundary cells at

he positive end of the simulation space. (More information about

he different types of fields and their various boundary cell possi-

ilities can be found in Nebo’s documentation.)

.1.3. Ghost cells

Multiple fields can combine to represent a single quantity for

he entire simulation space. Usually, this happens when the simu-

ation is distributed over a cluster using MPI. Ghost cells are extra

ells added along faces of the field shared with a neighboring field.

ata from the edge of a field can be copied into the ghost cells of

he field that logically neighbors it and vice versa, over MPI. Nebo

llows for fields to have an arbitrary number of ghost cells along

ll six faces of the field. However, most current users of Nebo are

imited to a single ghost cell because of design constraints predat-

ng the use of Nebo.

The ghost cell information needed to construct a field is the

umber of ghost cells on each face, which is six nonnegative in-

egers. The current implementation of fields allows for shortcuts

hen all faces have the same number of ghost cells.

Additionally, fields keep track of which ghost contain valid val-

es and which have been invalidated. Section 2.5 discusses when

nd how ghost cells can be invalidated. Ghost cell validation counts

an also be reset manually.

.1.4. Multiple device locations of a field

While a field is initially created on a single device (CPU or GPU),

t can be expanded to multiple devices. For example, consider the

eld, f, initialized on the CPU. To copy this field to the GPU, call
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
he following function:

This command checks to see if memory has already been al-

ocated on that device, and if not, allocates the proper amount of

pace. After checking that memory is allocated on the correct de-

ice, this command checks to see if the data on that device has

een marked as invalid/out of date. If the data has been marked as

nvalid, it copies data from the primary/active device (see below)

o the specified device. Once the copy has completed, the device

emory is marked as valid/current. There is also an asynchronous

ersion of this command:

The data in a field can with memory allocated on multiple de-

ices can be read from all devices whose data is marked as valid.

Attempting to read a field on a device without valid data throws

runtime exception.) The data in a field can with memory allo-

ated on multiple devices can be overwritten only from the pri-

ary/active device. (Attempting to write to a field on a device

hat is not the primary/active device throws a runtime exception.)

hen data is overwritten, all non-active devices have their data

arked as invalid, and require revalidating the data on those de-

ices (recopying).

Only one device can be primary/active at a time. The active de-

ice can be changed at any time with either of the following com-

ands:

This system of one active device and (potentially) multiple valid

evices simplifies memory management. Invalidation happens au-

omatically when data is accessed by a non-constant method. Data

ransfers between CPU and GPU either direction happen through a

ingle function with a single parameter (target device). While Nebo

sers (developers) are required to explicitly handle data transfers,

he current implementation of fields provides a simple API for do-

ng so. (The complete API is in Nebo’s documentation.)

To handle the asynchronous function calls correctly, every field

ontains a unique CUDA stream. Data transfers and Nebo state-

ents both use the CUDA streams in the internal calls to CUDA

unctions. For example, consider fields, f and g, both initially cre-

ted on the CPU. The following code will transfer both to the GPU,

nd execute the assignment statement only after both transfers

ave completed:

.2. Basic Nebo expressions

Expressions are the basic abstraction of Nebo. Nebo Expressions

epresent calculations, not values, as is generally expected of ex-

ressions. Nebo Expressions can be used in field assignment and

eductions (see Sections 2.3 and 2.6, respectively).

A Nebo Expression can be: a scalar value; a field; the valid

se of supported operators and functions (below), whose argu-

ents themselves are Nebo Expressions; a conditional expression,

hich is discussed in Section 2.4; or a stencil operator applied to

Nebo Expression, which is discussed in Section 2.5. Nebo Ex-

ressions support the following operations and functions: algebraic
portable domain-specific language for numerically solving partial

://dx.doi.org/10.1016/j.jss.2016.01.023
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operators (addition [• + •], subtraction [• − •], multiplication [•∗•],

division [•/•], and negation [−•]); trigonometric functions (sine

[sin(•)], cosine [cos(•)], tangent [tan(•)], and hyperbolic tan-

gent [tanh(•)]); extremum functions (minimum [min(•, •)] and

maximum [max(•, •)]), and other mathematical functions (expo-

nentiation with base e [exp(•)], exponentiation with given base

[pow(•, •)], absolute value [abs(•)], square root [sqrt(•)], and

natural logarithm [log(•)]). Nebo provides support for these op-

erators and functions through operator (and function) overloading

and template meta-programming, and the set of supported func-

tions is easily extensible. Examples of Nebo expressions appear

throughout this paper, beginning with the next section.

2.3. Assignment

Because Nebo calculates the discretized results of partial differ-

ential equations, Nebo assignments keep syntax very close to the

mathematical expressions. Field assignment is the primary use of

Nebo Expressions, which is comparable to a foreach operation or

Lisp’s map operation. With field assignment, Nebo Expressions pro-

duce a field (array) of values, which are the values used in the as-

signment. Nebo uses operator <<= for assignment instead of

operator = because using operator <<= makes it explicit

where Nebo overloads assignment. This assignment operator is the

only operator that Nebo has changed the semantic meaning from

the semantics of C++, other than lifting the operations over fields.

As a concrete but simple example of Nebo assignment, consider

the following equation, where a, b, and c are fields:

c = a + sin(b)

Without Nebo, this equation could be calculated with the follow-

ing code, which is similar to what Wasatch developers would write

before they started using Nebo:

With Nebo, this same equation can be calculated by:

which deploys on single- or multi-thread CPU as well as GPU.

2.4. Conditional expressions

The conditional statement if and the ternary operator

(• ? • : •) cannot be overloaded in C++. Thus, to have pointwise

conditional evaluation over fields, Nebo introduces cond, as used

in many functional languages (introduced by LISP). Fortunately,

cond fits into Nebo’s syntax through C++ operator overloading

and template meta-programming, which Nebo already exploits. Ad-

ditionally, through the use of inlined templated functions, cond
compiles down to nested ternary operators (• ? • : •). Thus, while

the templates for cond are not simple, the executed code is simple

and efficient.

For conditional expressions to be useful, expressions must ex-

press boolean values, which are provided by Nebo Boolean Ex-

pressions. Nebo Boolean Expressions are similar to Nebo Expres-

sions in that they represent calculations, not values. Unlike Nebo
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
xpressions, which produce scalar values when evaluated, Nebo

oolean Expressions produce boolean values when evaluated. A

ebo Boolean Expression can be: a boolean value; the numeric

omparison of two Nebo Expressions, using any of the C++ numeric

omparison operators (• == •, • ! = •, • < •, • > •, • <= •, and

>= •); or a logical connective of Nebo Boolean Expressions, us-

ng any of the C++ logical connective operators (• && •, • || •, and
•).

The requirements for cond are strict: Every non-final clause

ust contain exactly two arguments, and the last clause must con-

ain exactly one argument. The second argument of each non-final

lause and the single argument of the final clause must be a valid

ebo Expression. The first argument of each non-final clause must

e a Nebo Boolean Expression.

The semantics of cond mimic nested ternary operators (• ? • :

), lifted pointwise over fields. For each point, the conditional

xpression returns the value associated with the first true Nebo

oolean Expression. If none of the Nebo Boolean Expressions eval-

ate to true the conditional expression returns the value of the fi-

al clause.

For a concrete example, consider the following code:

With Nebo, this code can be rewritten as:

.5. Stencil operations

Stencil calculations arise from interpolation as well as discrete

alculus operations in the solution of partial differential equations.

n Nebo, stencils shapes are fixed at compile time while coeffi-

ients can be determined at runtime.

Consider the following 1-dimensional stencil example, which

alculates an approximation of a derivative of field T and uses tra-

itional C array access (array[•]) for clarity:

Graphically, with arbitrary values in field T, this gradient calcu-

ation looks like:

The values in field tmp come directly from field T: 0.5 ∗ (3 +
) = 4; 0.5 ∗ (5 + 7) = 6; 0.5 ∗ (7 + 11) = 9; and 0.5 ∗ (11 + 13) =
2.

If T and tmp are the same size, the last cell of field tmp does

ot contain a valid value because there is no further cell in field
portable domain-specific language for numerically solving partial

://dx.doi.org/10.1016/j.jss.2016.01.023

http://dx.doi.org/10.1016/j.jss.2016.01.023


C. Earl et al. / The Journal of Systems and Software 000 (2016) 1–12 5

ARTICLE IN PRESS
JID: JSS [m5G;February 15, 2016;19:42]

T
T

u

t

c

e

b

t

t

t

s

a

f

t

2

fi

i

o

M

t

(

a

t

a

s

W

c

t

u

3

P

d

t

s

b

3

f

l

o

t

p

e

p

o

b

t

w

g

f

h

e

a

t

c

o

t

N

o

a

S
j

s

f

c

t

f

e

E

i

W

i

i

c

t

m

a

t

a

o

t

t

l

. With any stencil there are edge cases that cannot be computed.

here are various ways to handle such edge conditions. Wasatch

ses “ghost cells,” a layer of cells surrounding the fields on all sides

o handle these boundary cases. Nebo supports usage of ghost

ells, and uses them as necessary. From type introspection on op-

rators, Nebo can determine how many ghost cells cannot be filled

y the application of an operator. This ghost cell information is re-

ained on a field through subsequent Nebo operations to ensure

hat fields do not exhaust their supply of valid ghost cells at run-

ime. Once ghost cells are invalidated (left unfilled), application-

pecific methods are used to revalidate them.

As another example, consider φ = ∇ · ∇T . To remain as close

s possible to the natural mathematical syntax and to allow loop

usion, Nebo uses function application,

Nebo also supports two- and three-dimensional stencils with

he same syntax.

.6. Reductions

Reductions, such as calculating the sum of all elements and

nding the max value in a field, use Nebo Expressions as their

nput. Reductions, along with field assignment, are currently the

nly uses of Nebo Expressions. These reductions act much like

apReduce Dean and Ghemawat (2008), where the calculation of

he Nebo Expression is the map step, and the reduction operation

sum, max, etc.) is the reduce step. Thus, Nebo reductions produce

single scalar value. Currently, Nebo supports the following reduc-

ions directly: min, max, sum, and L2 norm.

For example, consider the following expression involving fields

and b:

um(a + sin(b))

ithout Nebo, this equation could be calculated with the following

ode:

With Nebo, this same expression can be calculated by:

In cases where reductions over subsets of fields and/or calcula-

ions are needed, conditional expressions (see Section 2.4) can be

sed.

. Implementation of Nebo

This section presents the implementation of Nebo in two parts:

arsing (Section 3.1) and the backends (Section 3.2). Section 3.1

iscusses how Nebo is parsed into abstract syntax trees through

emplate meta-programming. Section 3.2 discusses how an abstract

yntax tree is converted into runnable code for each of Nebo’s

ackends.
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
.1. Template meta-programming

The C++ template system is a completely-pure, Turing-Complete

unctional language. There are several implementations of the

ambda calculus in the C++ template system that serve as proofs

f concept Unruh (1994); Veldhuizen (1995).

Even though the Turing-Completeness of C++ templates is in-

eresting, meta-programming tools like Nebo rarely use its full ca-

abilities. Unless the compile-time computation affects the gen-

rated code, there are more straightforward tools that can com-

ute the same results. Since this system is part of the type system

f C++, compile-time computation can remove runtime overhead,

y informing the compiler about constant values, inlineable func-

ions, and control flow paths. Thus, using the C++ template system,

e can inform the compiler exactly what the subexpressions in a

iven Nebo Expression are and avoid using virtual lookup tables

or functions, which would be used with traditional C++ class in-

eritance.

Nebo Expressions are template objects, whose template param-

ters are the types of the expression’s subexpressions. Thus, when

nalyzing the function calls to subexpressions, the compiler knows

he specific type and therefore the specific function that will be

alled to evaluate a given element at runtime. Therefore, the type

f a Nebo Expression is an abstract syntax tree (AST) of the calcula-

ion that the Nebo Expression is to perform. Consider the following

ebo code:

Building this AST framework is rather straightforward. C++

perator overloading allows functions and operators to return

ny type. The addition operator generates an object of type

umOp<Arg1, Arg2>, and the sin function generates an ob-

ect of type SinOp<Arg>. A simplified version of the right-hand

ide’s return type in the above example is:

We also use this template/type AST approach to generate dif-

erent backends. Depending on available resources and run-time

onditions, Nebo is able to run on a single thread, on multiple

hreads, or on a GPU. Each backend requires different yet related

unctionality to run on its target architecture. To keep each back-

nd separate and distinct, Nebo uses another template parameter.

ach Nebo Expression has a template parameter for mode. A mode

s either a backend or an intermediate step towards a backend.

hen a use of a Nebo Expression, such as in a Nebo assignment,

s executed, an instance of the Nebo Expression AST is constructed

n the Initial mode. At compile time, all enabled backends are

ompiled for the Nebo Expression AST with the mode matching

hat backend. During execution, based upon the current location of

emory and runtime options, a single enabled backend is selected

nd instantiated with the appropriate mode.

Consider again the example from earlier in this section. The

ype of the Nebo Expression in this assignment starts out as:

At compile-time, each specific use of Nebo assignment builds

n AST for each enabled backend. Each AST for each specific use

f Nebo assignment for a specific backend represents a different

ype. At runtime, Nebo will chose a specific backend to run each

ime a Nebo assignment statement is executed. (Section 3.2 be-

ow describes how a backend is chosen.) When a backend has been
portable domain-specific language for numerically solving partial
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chosen, a new instance of the AST (a specific type) is created. For

example, if the single-thread backend is chosen, which uses the

SeqWalk mode (short for sequential walk), the AST becomes:

There are a total of five modes: Initial, SeqWalk, Resize,

GPUWalk, and Reduction. The use of each of these modes is dis-

cussed in Section 3.2.

3.2. Backends

This section discusses Nebo’s single-thread, multi-thread, and

GPU backends and how Nebo decides which backend to use during

execution. As discussed in Section 3.1, Nebo uses different modes

(types) to implement different backends to Nebo. The mode of a

Nebo Expression is represented by a template argument. The im-

plementation of a mode for a Nebo Expression is a partial tem-

plate specialization. Each partial template specialization is a dif-

ferent type and therefore has no restrictions on what it can and

cannot contain, beyond the limits of a C++ class. However, by con-

vention in Nebo’s implementation, each mode provides a uniform

interface. For example, every term’s Initial mode implements an

init() method, which returns the same Nebo Expression but in

the SeqWalk mode. Thus, Nebo’s partial template specializations

behave much like C++ classes that have inherited some basic inter-

face. This convention creates a uniform way for Nebo Expression

terms to interact with their subexpressions.

Nebo uses a mix of compile-time and runtime parameters to

determine which backends to use. For the compile-time flags, Nebo

uses the C preprocessor macro #ifdef to add or to ignore Nebo’s

various backends. By default, Nebo only compiles the single-thread

CPU backend, and regardless of how flags are set this backend is

always available. The thread-parallel and GPU backends are com-

piled by defining ENABLE_THREADS and ENABLE_CUDA, respec-

tively. Furthermore, for the GPU backend to be used, the code must

be compiled by NVidia’s CUDA compiler, nvcc.

At runtime, the Initial mode of a Nebo Expression is con-

structed first. If the Nebo Expression is used in a reduction, the

expression switches to the reduction mode, and continues as ex-

plained in Section 3.2.4. If the Nebo Expression is used in an

assignment, Nebo then chooses which particular backend to use

based on choices implicitly made by the user/developer. Assum-

ing all backends are compiled, Nebo first checks the location of

the memory for the result field. (The field class contains informa-

tion about where the memory was allocated through the use of

a device index, so Nebo simply checks that device index. By con-

vention, the CPU is -1 and GPU indices match NVidia’s device in-

dex, which are 0 or greater.) If the memory is located on a GPU,

then Nebo uses its GPU backend. If the memory is located on a

CPU, then Nebo checks the number of active threads in the thread-

pool it uses. If there is more than one active thread, Nebo uses

its thread-parallel backend. Otherwise, Nebo uses its single-thread

CPU backend. Of course, if a particular backend of Nebo is not com-

piled, Nebo will skip the check for that backend.

In the case where the memory of different fields is located in

different memory spaces, Nebo throws a runtime exception. In the-

ory, Nebo could handle the data transfer between CPU and GPU -

and in fact does in a specialized GPU debug build mode. However,

one of Nebo’s guiding design principles is to make expensive op-

erations explicit to developers using Nebo. In a production envi-

ronment, an unexpected and silent data transfer is a performance

bug, and so Nebo makes that an explicit runtime error with an a

detailed and explicit message as to why an exception was thrown.
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
The reason behind this decision process is to simplify control-

ow and data movement: Nebo runs its calculation on the pro-

essing unit (CPU or GPU) where the data already is. Because of its

cope, Nebo leaves the decisions of how many threads to use and

here to allocate memory up to end users. Nebo only considers

ow to efficiently compute the result of a single Nebo Expression

ith a given backend. Broader issues, such as available resources,

ffectiveness of those resources, and how heavily those resources

re being used are beyond Nebo’s capabilities. Thus, Nebo’s design,

yntax, and different backends make it easy and simple to change

cheduling and memory locality for users and tools that can reason

bout the above issues.

.2.1. Single-thread implementation

The SeqWalk mode implements Nebo’s default single-thread ex-

cution backend. The SeqWalk mode uses affine loop indices to

alculate individual points. The interface has a single function for

he right-hand side (Nebo Expression) of an assignment: An eval()

ethod which evaluates the Nebo Expression at the current index.

he interface has a single function for the left-hand side of an as-

ignment (a NeboField object): A ref() method which returns a

eference to the current element of the underlying field. To exe-

ute the assignment, Nebo loops over all valid indices:

For example, consider the single-thread execution of the exam-

le from Section 3.1:

Ignoring the SeqWalk mode and the field type template argu-

ents, the type of the left-hand side of this assignment becomes

eboField. The type of the right-hand side of this assignment be-

omes

Each call to rhs.eval(), SumOp’s evaluate method, calls the eval-

ate method on both of its arguments, adds the values from

hese evaluate calls together, and returns the result. Each call

o NeboScalar’s evaluate method simply returns its scalar value,

hich is in this case 3.14159. Each call to SinOp’s evaluate method

alls the evaluate method on its argument, applies the sine func-

ion to the value from this evaluate call, and returns the result.

ach call to NeboConstField’s evaluate method dereferences the

alue from the current index and returns that value.

While there are a lot of nested eval function calls for each it-

ration of the above while loop, all of these functions are able to

e inlined. Fortunately, these function calls are textbook examples

f functions to inline: First, they are short and simple functions.

econd, each function is used in exactly one location. Thus, when

ompiling Nebo with standard optimizations, such as gcc’s -O3 op-

imizations, gcc inlines most eval function calls. (Compilers, such

s gcc, use heuristics to determine when it is useful to inline func-

ions such as Nebo’s internal eval functions. In some rare cases it

s not beneficial to inline functions, such as when inlining a long

unction would increase the distance of short jumps, such as con-

itional jumps, in the surrounding code beyond their range, forcing

he surrounding code to use less efficient, yet longer range, jump

nstructions. Regardless of the efficiency of these heuristics, Nebo

oes not handle any of these optimizations and leaves them solely

o the host C++ compiler.)
portable domain-specific language for numerically solving partial
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.2.2. Multi-thread implementation

Nebo’s strategy for multi-thread execution is to divide the fields

nderlying the current Nebo Expression into subfields. Each sub-

eld is then assigned to a thread and executed sequentially on that

hread. Nebo’s semantics define that elements in Nebo assignment

an be evaluated and assigned in any order. Thus, there is no need

or inter-thread communication other than to signal that a subfield

as finished execution.

When Nebo has decided to use the multi-thread backend, Nebo

ses information from the field on the left-hand side of the as-

ignment to determine a partitioning scheme. Users or frameworks

an set that partition scheme. Once Nebo has determined its par-

itioning scheme, Nebo creates an instance of the Nebo Expression

n Resize mode. The original Nebo Expression schedules each par-

ition in a FIFO work queue with the Nebo Expression in Resize

ode. A thread pool pulls jobs off of the work queue. A semaphore

s used so that the original instance of the Nebo Expression in

nitial mode is informed when the job is done.

.2.3. Many-core (GPU) implementation

Because GPUs use a Single-Instruction Multiple-Data (SIMD)

odel of execution, Nebo’s GPU backend is very different from

ebo’s other backends. Nebo’s GPU backend sets up a ’plane’ of

hreads, such that each thread has a unique pair of X-axis and Y-

xis indices. Then all the threads together iterate through all the

indices. At each Z index, each thread calculates the result for its

nique combination of X, Y, and Z indices. For example, consider a

eld whose dimensions are 3 by 4 by 5 (X, Y, Z, respectively). In

his case, Nebo’s GPU backend would use 12 threads (3 times 4),

nd each thread would calculate 5 different elements.

The code for each thread is somewhat similar to the code for

equential execution:

Despite the differences between execution model, the code to

xecute a Nebo assignment on a GPU looks very similar: The first

bvious difference between the sequential CPU code and the GPU

ode is that the x and y indices are fixed for each thread. Because

he CUDA programming model constructs a Nebo Expression for

ach thread exactly the same for all threads, except for a few in-

exing variables (blockIdx, blockDim, and threadIdx), each thread

ust determine what its assigned X-axis and Y-axis indices are.

he next obvious difference are the initialization method start

nd the guard method, valid(). For the sake of execution speed

nd regularity, sometimes threads are assigned X-axis and Y-axis

ndices that are outside the bounds of the fields. Thus, the start

ethod determines for each thread if the X-axis and Y-axis indices

f the current thread point to a valid element of the fields. The call

o the valid method returns true, if and only if the start method

etermined that the indices are valid.

Because Nebo uses asynchronous kernel invocations, some syn-

hronization must be handled by the end user. Nebo uses CUDA

treams to synchronize kernel calls. Each field contains a CUDA

tream, which are set outside of Nebo and which Nebo passes

o the kernel calls. When the end user is using Nebo inside of

asatch, Wasatch handles initializing CUDA streams and assigning

hem to the proper fields. Also, Wasatch handles synchronizing the

UDA streams where necessary.
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
.2.4. Reduction implementation

The Reduction mode implements Nebo’s reduction operations.

urrently, Nebo reductions are implemented for single-core and

any-core (GPU) execution. For the single-core implementation,

he Reduction mode uses an interface for Nebo Expressions which

s almost identical to the interface for SeqWalk mode. The major

ifference between a reduction and a single-thread assignment is

hat there is no left-hand-side/assignee in a reduction.

The reduction backend loop is very similar to the single-core

ackend for assignment:

The GPU backend for reductions is likewise similar to the GPU

ackend for assignment. The major difference is that each thread

omputes a partial result, and the results are combined using stan-

ard NVidia parallel reduction techniques.

. Results

This section presents three different performance results: The

rst in Section 4.1 for a simple scalar right-hand side term; the

econd in Section 4.2 for tests with different levels of computa-

ional intensity run with ExprLib, the task parallelism library used

n Wasatch Notz et al. (2012); and the third in Section 4.3 com-

aring Wasatch with Nebo to other components of Uintah. These

rst two sections are tested using all of Nebo’s backends. The final

ection is only evaluated using Nebo’s CPU single-thread backend,

o simplify the comparison to the other components of Uintah.

.1. Scalar right-hand side term

The scalar right-hand side term, a single Wasatch task, is a

reat example of how Nebo has improved code in Wasatch:

∂φi

∂t
= − ∂

∂x

(
Cx + Dx

)
− ∂

∂y

(
Cy + Dy

)
− ∂

∂z

(
Cz + Dz

)

here C and D represent the convective and diffusive fluxes of φ
n each direction. The original version of this calculation used 13

oops, because it predated the development of Nebo and there was

o way to combine multiple operations into a single loop:

The current version makes full use of Nebo, and needs only a

ingle assignment (one loop):

The Nebo version of this code replaces 13 statements, each of

hich did a single operation, with one statement that performs the

ame calculation. The Nebo version is easier to read, understand,

nd maintain than the original version is.
portable domain-specific language for numerically solving partial
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Fig. 1. Speedup of Nebo’s parallel backends over Nebo’s single-thread backend for the scalar right-hand side term with problem size of 643 and 1283. The specific parallel

backends tested here are 2, 4, 6, 8, 10, and 12 threads with the multi-thread backend as well as the GPU backend. (T-X refers to the multi-thread backend with X threads.)

These tests were run on a 12-core Intel Xeon E5-2620 (2 × 6 cores at 2.00 GHz and 15MB cache) with 16 GB RAM and a NVidia GeForce GTX 680. These tests compared

the entire execution run. Thus, while Nebo does not automate memory transfer to/from GPUs, the speedups for the GPU execution includes the time needed for memory

transfers to/from the GPU.
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More important than the simplification of the code, the current

version of the scalar right-hand side code performs nearly twice

as fast as the original version: For a problem size of 643 elements,

the current version is 1.88 × faster than the original version, and

for a problem size of 1283 elements, the current version is 1.91 ×
faster than the original version.

The speedup of the Nebo version over the original comes from

fewer instructions (the overhead from one loop instead of 13

loops) and from not storing intermediate results to memory (better

cache usage). One could write by hand a single loop that performs

the same calculation; however, one would then need to calculate

the stencil operations by hand. Furthermore, the hand-written sin-

gle loop would not be portable to the GPU, and would require fur-

ther modification to run on multiple threads in parallel.

Fig. 1 shows that Nebo’s multi-thread backend for the scalar

right-hand side term scales to 4 threads for both problem sizes.

The GPU backend, however, is up to 16 × faster than Nebo’s single-

thread CPU backend. The GPU backend has less loop-related over-

head than the CPU backends. (All CPU threads hava a triply-nested

loop structure for x-, y-, z-dimensions, whereas all GPU threads

have a flat loop structure for the z-dimension.) However, at larger

problem sizes, such as the 1283 case, this loop-related overhead

matters less on the CPU. Thus, the 1283 case scales better than

the 643 case on the multi-threaded CPU backend. Likewise, the

CPU loop-related overhead is less with on the 1283 case, and so

on that case the GPU backend does not perform as well relative

to the single-thread CPU backend, compared to its performance on

the 643 case.

Finally, the calculation for this term is computationally light:

Each stencil contains two multiplications and an addition, for a

total of six multiplications, six additions, two subtractions, and

a negation. For Nebo’s multi-thread backend to scale further, the

calculations need to be more computationally intensive. Likewise,
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and

differential equations, The Journal of Systems and Software (2016), http
ebo’s many-core backend can perform better relative to single-

hread performance with more computationally intensive calcula-

ions. The following performance tests confirm the need for more

omputationally intensive calculations.

.2. Task graph results

We set up several tests of differing computational intensity in

xprLib that evaluate diffusion and source term expressions for ob-

aining solution variables. The source terms involved in these tests

re representative of the same type of calculations used in a de-

ailed chemical kinetics simulation. These tests each involve evalu-

ting 30 partial differential equations (PDEs) arranged in the form

f a task graph for 100 iterations. Each of the 30 PDEs has a task

or the diffusive flux, a task for the source term (when present),

nd a task to combine the results of the diffusive flux and the

ource term. Thus, there are 90 tasks in the task graph for the tests

ith source terms and 60 tasks for the test without a source term.

The mathematical expression calculated for these tests is:

∂

∂x

(
�i

∂φi

∂x

)
+ ∂

∂y

(
�i

∂φi

∂y

)
+ ∂

∂z

(
�i

∂φi

∂z

)
+ si

here si is different for each of the three tests. The first test calcu-

ates only diffusive flux, and so the source term is removed. The

econd test calculates diffusive flux and an independent source

erm, si = ∑n
j=1 exp(φ j). The third test calculated diffusive flux

nd a coupled source term, where si depends on all of the φj as

i = ∑n
j=1 exp(φ j). These tests are in order of increasing computa-

ional intensity.

Fig. 2 shows speedup of Nebo’s multi-thread performance over

ebo’s single-thread performance for all three tests with problem

izes of 643 and 1283. Likewise, Fig. 3 shows speedup of Nebo’s

any-core (GPU) performance over single-thread performance for
portable domain-specific language for numerically solving partial
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Fig. 2. Speedup of Nebo’s multi-thread backend with 2, 4, 8, 12, and 16 threads over Nebo’s single-thread backend for the ExprLib tests with problem size of 643 and 1283.

These tests were run on a 12-core Intel Xeon E5-2620 (2x6 cores at 2.00 GHz) with 16 GB RAM. The solid vertical line indicates the number of physical cores on the machine.

The tests were conducted without using the Uintah’s framework and hence there is no overhead related to communication and data-storage offered by Uintah.

Fig. 3. Speedup of Nebo’s many-core (GPU) backend over Nebo’s single-thread backend for the ExprLib tests with problem size of 163, 323, 643, and 1283. The coupled

source and diffusion test is 140 × faster on Nebo’s many-core backend than Nebo’s single-thread backend with a problem size of 1283. These task graph tests were run on a

12-core Intel Xeon E5-2620 (2x6 cores at 2.00 GHz) with 16 GB RAM and a NVidia Tesla K20 architecture. The tests were conducted without using the Uintah’s framework

and hence there is no overhead related to communication and data-storage offered by Uintah. These tests compared the entire execution run. Thus, while Nebo does not

automate memory transfer to/from GPUs, the speedups for the GPU execution includes the time needed for memory transfers to/from the GPU.

Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial
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the same tests and problem sizes. Fig. 2 shows that the diffusion

with a coupled source term test scales linearly up to the num-

ber of cores on the system in use (12) with Nebo’s multi-core

backend. The diffusion with independent source term test does

not scale as well, especially for the smaller problem size; more-

over, the diffusion only test does not scale well, particularly be-

yond 4 cores. Fig. 3 shows that more than half of the ExprLib

tests with Nebo’s many-core backend are more than 10 × faster

than the single-thread backend, and the fastest of which is just

over 140 × faster. Only the diffusion only test on the smallest

problem size (163) is slower than the single-thread backend. This

problem size is far smaller than what is typically run on a single

node within the broadly distributed MPI simulation. As with the

multi-thread backend tests, the diffusion with a coupled source

term test scales the best, and the diffusion only test scales the

worst.

The general trend of these tests is that more computation-

ally intensive calculations (coupled source with diffusion) perform

better than less computationally intensive (diffusion only) calcu-

lations. The reason for this trend is that computational intensity

hides memory latency. Finally, it is interesting to note that Nebo’s

multi-thread backend with 16 threads improves over 12 threads for

most tests on a system with 12 cores. This limited improvement

comes from hyper-threading.

4.3. Code to code comparisons

The Taylor-Green vortex Taylor and Green (1937); Brachet et al.

(1983) is a classic two-dimensional fluid dynamics problem, whose

analytic solution makes it a common verification problem for nu-

merical PDE solvers. In this section, we are not using the Taylor-

Green vortex for verification but rather as a basis for comparison of

performance of several CFD solvers. In particular, Wasatch, Arches

Schmidt et al. (2013b), ICE Guilkey et al. (2007), all components

of Uintah written by application domain experts, solve the Taylor-

Green vortex problem using very similar numerical schemes. Un-

like Wasatch, Arches and ICE do not use a domain-specific lan-

guage for their numeric calculations but use hand-written loops

instead.

Fig. 4 presents the single-core speedup for Wasatch relative to

Arches and ICE. For small domain sizes (83), Wasatch, Arches, and

ICE perform roughly the same with Wasatch doing slightly bet-

ter. As the domain size grows, Wasatch performs increasingly well

compared to Arches and ICE. At the largest size (1283), Wasatch

using Nebo runs nearly 6x faster than Arches and nearly 10x faster

than ICE. In practical applications, for MPI-scalability considera-

tions, patch sizes are typically in excess of 323, which corresponds

to > 4 × and > 6 × speedup for Wasatch.

As components of Uintah, Arches and ICE use the same in-

terface and framework for communication and data storage as

Wasatch does. This comparison shows that Wasatch’s approach and

use of Nebo is very competitive inside of Uintah. In particular, it

demonstrates that Nebo does involve any intrinsic overhead that

prevents Wasatch from performing better than both Arches and

ICE. It also bears mentioning that the timings reported in this sec-

tion exclude the Poisson solver, used to calculate pressure, since

it is used in the same manner across all three components. Nebo

provides an efficient (and correct) language/library for calculating

the numeric solutions to PDEs that separates the concerns of cor-

rectness and speed (what versus how). By using Nebo, Wasatch

can write code that not only out-performs sibling codes within the

Uintah framework, but that is also architecture-portable; deploy-

ment of Nebo on GPU or multi-core CPU is done without any in-

tervention on the part of the application developer.
Please cite this article as: C. Earl et al., Nebo: An efficient, parallel, and
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. Related work

There are many other domain-specific languages that have

unctionality and domains similar to Nebo, but none contain all

f Nebo’s features. POOMA Reynders (1997) is probably the most

omparable DSL to Nebo. POOMA is in the same domain, uses sim-

lar abstractions, is embedded in C++, and supports thread and

essage-passing parallelism. POOMA has not scaled to the extent

hat Nebo, Wasatch, and Uintah have (weak scaling upto 262K

ores, see Earl (2014)), and POOMA does not support GPU execu-

ion.

The Pochoir stencil compiler Tang et al. (2011) supports sten-

il calculations very similar to the stencils Nebo provides. Pochoir

s semi-embedded in C++, since it uses an external compiler for

ptimization. While Pochoir’s optimizations are more advanced

hat Nebo’s, Pochoir does not support GPU execution. Furthermore,

ochoir does more optimizations than Nebo; however, Pochoir

ust analyze the entire time-step function, which currently limits

t to simple time-step functions. By comparison, Wasatch regularly

uns time-step functions that use dozens and sometimes hundreds

f variables.

Liszt DeVito et al. (2011) represents PDEs by abstracting based

n geometry and spatial reasoning rather than mathematical equa-

ions as Nebo does. Liszt supports both CPU- and GPU-based par-

llelism, but does not support incremental adoption. Thus, entire

pplications must be written in Liszt to use Liszt.

OptiMesh Sujeeth et al. (2013), developed with the Delite com-

iler Brown et al. (2011), offers CPU- and GPU-based parallel back-

nds within the same runtime environment, like Nebo. OptiMesh

ses the same abstractions and much of the same syntax as Liszt

or solving PDEs. In general, OptiMesh performs better than Liszt

ecause Delite supports more aggressive optimizations.

POOMA, Pochoir, and OptiMesh support forms of incremental

doption, while Liszt does not. For Pochoir and OptiMesh, partial

doption require adding new compilers to a projects build system.

n comparison, Nebo works without adding a new compiler in ex-

sting C++ projects.

Algorithmic skeletons, such as SKePU Enmyren and Kessler

2010) and Marrow Marques et al. (2013), provide similar ca-

abilities to Nebo, without the domain-specific abstractions and

unctionality for numerically solving partial differential equations.

lgorithmic skeletons provide basic parallelism abstractions that

void implementation-specific parallelism details; however, to use

lgorithmic skeletons, users must write their programs in terms of

hese basic parallelism abstractions. To use Nebo, users write their

rograms in mathematical equations and terms, closely matching

he partial differential equations that they are ultimately trying to

olve numerically.

. Future work

Nebo and ExprLib are works in progress. We are currently in-

egrating Wasatch’s (Nebo) GPU backend with Uintah’s GPU sup-

ort. Some calculations in Wasatch are done through third-party

ibraries which do not support parallelization. We are working on

ntegrating these libraries into Nebo’s multi-thread backend to par-

llelize these heavy operations. We are also working on adding

oundary conditions to Nebo, so that non-periodic boundary con-

itions can be computed on the GPU, rather than just on the CPU,

s is currently done. Since Nebo does not have any method to fuse

oops, we are starting a new project that would automate loop fu-

ion between Nebo assignments. We are considering adding new

ackends to Nebo to support architectures such as Intel’s Xeon Phi

o-processors.
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Fig. 4. Taylor-Green vortex test results showing speedup of Wasatch over Arches and ICE on problem sizes 83, 163, 323, 643, and 1283. Each test ran on a single processor

using a single thread.
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. Conclusion

Using Nebo, domain experts are able to create code that is effi-

ient, scalable, and portable across multiple architectures. Despite

ot being feature complete, Nebo and ExprLib have good results:

ebo, on its own, can be better than C++ code hand-written by

omain experts, and automates parallelism with threads and GPUs.

ith a graph of 90 tasks and a computationally intensive simula-

ion, Nebo and ExprLib scale linearly up to the number of cores

n the system with Nebo’s multi-thread backend, and can per-

orm 140 × faster with Nebo’s GPU backend than Nebo’s CPU back-

nd. Moreover, Nebo, ExprLib, and Wasatch are significantly faster

han Arches and ICE for the Taylor-Green Vortex problem. Finally,

asatch using ExprLib and Nebo has weakly scaled to 262K cores

n Titan Schmidt et al. (2013a).
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