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ABSTRACT: Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are
valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for
new construction. However, accurate predictive simulations require physically realistic submodels with low computational
requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple
reaction and diffusion processes. This work focuses on the sensitivity of a recent comprehensive char conversion code named
CCK, which treats surface oxidation and gasification reactions as well as the processes such as film diffusion, pore diffusion, ash
encapsulation, and annealing. In this work the CCK code was adapted for the conditions of an oxy-coal system and subjected to
global sensitivity analysis techniques in an effort to rank fundamental input parameters in order of importance. Comprehensive
char conversion codes have dozens of fundamental parameters, some of which are not well-defined. Global sensitivity analysis
was used to identify the most important submodels in order to direct additional research on model improvement. Results of this
analysis showed that the annealing model, the oxidation reaction order, the swelling model, and the mode of burning parameter
are the most influential and therefore prime candidates for improvement.

1. INTRODUCTION
Coal-fired power plants have provided a substantial percentage
of global electricity for decades, and current outlooks indicate
that they will continue to do so for the foreseeable future. The
high proportion of electrical power generation is matched by a
correspondingly high proportion of CO2 emissions. In order to
meet regulatory targets for reduced emissions, carbon capture
and sequestration techniques must be employed, and oxy-coal
combustion is a promising potential solution.
Oxy-coal combustion has been reviewed thoroughly else-

where,1,2 but in essence it consists of injecting high-purity O2
with the pulverized coal rather than the conventional air-fired
method. To reduce the boiler temperatures to manageable
levels, the flue gas is typically recycled, producing a combustion
environment with high concentrations of CO2, O2, and
(potentially) H2O. The flue gas then contains very high
concentrations of CO2, and the CO2 is thus relatively easy to
capture.
While this system simplifies carbon capture, it also radically

changes the environment the coal particles experience. The new
environment changes the O2 diffusion rate, may cool the char
particle via endothermic gasification, and may alter the overall
char consumption rate due to gasification reactions.3 These
effects and others such as reduced flame temperature, delayed
ignition, decreased acid gases, and increased gas emissivity can
largely be ascribed to differences between CO2 and N2 (the
respective diluents in oxy-coal and air-fired pulverized coal
systems).1 The change in diluent gas induces several
interrelated effects that alter the burnout time and radiative
behavior of the system, so accurate CFD predictions of oxy-coal
combustion require models that describe these phenomena.
This work supports CFD modeling of oxy-coal boilers either for
the retrofit of existing boilers or the construction of new oxy-
coal-fired power plants by identifying the most sensitive
submodels in comprehensive char oxidation codes. Specifically,

the parameter sensitivity of the carbon conversion kinetics
(CCK) code4,5 was examined for oxy-coal conditions. The
CCK char combustion code was chosen since it contains a high
degree of physical detail in several submodels for char
conversion via CO2, H2O, and O2 gasification. A sensitivity
analysis on this code was used to identify the most influential
submodels in oxy-fuel conditions, which can in turn guide
future research and submodel improvements.

2. EXPERIMENTAL SECTION
To conduct a relevant sensitivity analysis, the model was run at
conditions related to real-world application. Here, the most applicable
conditions are the oxy-coal combustion environment, so experimental
data from the literature were chosen as a reference point at useful
conditions. The experimental data also allowed the kinetic parameters
to be optimally fit and fixed, so that the subsequent sensitivity analysis
is most relevant at oxy-coal conditions with the kinetics of the specific
coals in question, though the results are believed to be broadly
applicable. The experimental data referenced here were collected by
Shaddix and Molina6 and Geier et al.7 The reactor consists of a burner-
stabilized flat flame, a quartz chimney for gas and particles to flow
through, and a coal particle inlet in the center of the burner. The coal
particle flow rate was sufficiently low that particles did not affect each
other or the bulk gas composition. The data were for two
subbituminous coals (Black Thunder and North Antelope) and two
high-volatile bituminous coals (Utah Skyline and Pittsburgh seam)
which were subjected to conditions of 14 or 16% H2O, 12, 24, or 36%
O2, and the balance CO2, at gas temperatures ranging from
approximately 1400 to 1700 K. The proximate and ultimate analyses
of the coals and a summary of experimental conditions are given in
Tables 1 and 2. The char particles were in the reactor for up to
approximately 0.1 s (post-devolatilization), and on the order of 1,000
particle temperature and diameter data points were collected for each
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condition. The data collected included particle temperature and
particle diameter.

3. CHAR CONVERSION MODELING
Several char conversion models include complex submodels
that attempt to capture the most important chemistry and
transport effects of char conversion. The code used here is an
extension of the CCK code4,5 with minor adjustments to make
the code functional in the extremes of oxy-coal combustion.
These modifications include a more stable temperature solver
with informed initial guess values that result in rapid
convergence times, step-size independence, and successful
model execution at extremely high temperature (appropriate
for highly elevated O2 concentrations) or high H2O and CO2
concentration environments. Predecessors of this code include
carbon burnout kineticsextended (CBK/E8) and carbon
burnout kineticsgasification (CBK/G)9 codes (which grew
out of the carbon burnout kinetics or CBK code10). Like other
recent CBK iterations, CCK includes the kinetic mechanism
shown in eqs R1−R8 to model the oxidation and gasification of
carbon. Note that in this mechanism the C(O) complexes in
reactions R3, R5, and R7 represent distinct species with
separate reactant pools, as indicated by their subscripts. This
means that conversions via O2, CO2, and H2O all have different
pathways and do not share the same C(O) complex pools as a
common reactant (i.e., if reaction R1 were to be very rapid and
produce a high concentration of the C(O)α complex, this
complex would not facilitate reaction R5 or R7, nor hinder
reaction R4 or R6). This reaction formulation is in accordance
with section 3.2 of Liu and Niksa.9 The CCK code also includes
the other models shown in Table 3.
The extended CCK code contains over 300 input parameters

that include effects such as reaction kinetics, pore diffusion,
thermal annealing, ash layer buildup, particle size distribution,
and distributed activation energies. The object of this study is
to statistically determine the most sensitive parameters of this

model in oxy-fuel combustion environments to optimally target
further research and model improvement for those parameters.
More detailed descriptions of the CCK- and CBK-type models
are available elsewhere.4,5,8−10

4. SENSITIVITY ANALYSIS METHOD
The primary focus of this work is the sensitivity analysis,
including the methods and results. Sensitivity can be measured
in many ways by such standards as output variance, absolute
change in output, and correlation of model inputs with model
outputs, etc. These measures do not necessarily give the exact
same information, but they reveal, broadly, which input
variables have the greatest impact on model output quantities
of interest. In the analyses presented here, three methods were
employed. The first is a simple correlation check, the second
considers the magnitude of the change in the outputs induced
by the change in the inputs, and the third examines the
monotonicity of input/output relationships. The three methods
were chosen because they could be applied with reasonable
coding and computational effort (once the codes were written
and validated, they consumed approximately 1 week of
computational time crudely parallelized on a Mac Pro, 2014
model) and yielded results at an adequate level of detail (i.e.,
the results of the sensitivity analysis were consistent between
computational runs).
These three methods were applied by varying all parameters

simultaneously, followed by a comparison of the input and
output matrices. Depending on the comparison method, the
sensitivity test assumed either linear or monotonic variation of
inputs with outputs. The test also assumed that any given
variable would induce roughly the same order of magnitude
change in the outputs. These assumptions are not rigorously
true, but the results presented below show they are adequate to
rank the various submodels and parameters in order of
importance. Also, it must be emphasized that the linearity
assumption is far more valid than might initially be supposed.
In this case, the values of the parameters are known, and each
parameter is associated with a linear coefficient that can be
determined via multiple linear regression. The regressed model
remains linear as long as the coefficients do not have a
multiplicative, exponential, or logarithmic relationship to each
other. This is valid regardless of the fact that the parameter,
when employed in the CCK model, can (and often does)
undergo any number of nonlinear operations or trans-
formations.
The sensitivity analysis is of general interest because some of

the parameters used in comprehensive char conversion models
may be used more as fitting parameters rather than measurable,
physical quantities.6,13 Such fitting parameters weaken the
predictive capability of the model. For example, physical
measurements of tortuosity are generally unavailable, so
relevant parameters are often tuned to specific data sets. The
CCK model includes several submodels with numerous
parameters, many of which have second order and higher

Table 1. Proximate and Ultimate Analysis of Coal Particles between 73 and 105 μm

coal moisture (% AR) ash (% AR) volatiles (% AR) C (% daf) H (% daf) O (% daf)a N (% daf) S (% daf)

Black Thunder 9.34 4.84 42.34 68.96 5.00 25.41 0.97 0.45
Utah Skyline 1.69 10.2 40.79 79.4 6.09 12.25 1.67 0.59
Pittsburgh 0.47 6.95 35.89 81.26 5.55 10.17 1.54 2.16
North Antelope 10.83 5.54 39.64 72.12 5.45 21.08 1.00 0.35

aBy difference.

Table 2. Summary of Experiments for Coal Particles between
53 and 125 μm

coal
O2

(mol %)
CO2

(mol %)
H2O

(mol %)

peak
particle
temp (K)

peak gas
temp (K)

Black Thunder 12 74 14 1732 1741
24 62 14 1919 1710
36 50 14 2147 1726

Pittsburgh 12 74 14 1889 1741
24 62 14 2077 1710
36 50 14 2248 1726

Utah Skyline 12 72 16 1954 1697
24 60 16 2181 1700
36 48 16 2564 1714

North Antelope 12 72 16 1931 1697
24 60 16 2108 1700
36 48 16 2414 1714
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interactive relationships. A sensitivity analysis was therefore
performed to rank the parameters in order of importance.
Because of the many complex interactions between model
parameters, the sensitivity analysis was global, over the entire
range of physically reasonable parameter space, and with all
parameters of interest varying simultaneously. This is the first
time such a formal global analysis has been applied to a
comprehensive char conversion code. The results of this
analysis identified prime candidates for model improvement,
and these candidates generally have an equivalent submodel or
parameter in other comprehensive char conversion codes,

which allows the results shown here to apply broadly to
conceptually similar codes.

4.1. Determination of the Fundamental Parameters.
As a first step, the set of model parameters was reduced to
fundamental parameters, defined as those that were not
computed from other parameters. This reduced the number
of parameters to approximately 50, and these were further
reduced to 36 parameters by testing only the physically feasible
range of the combined activation energies (E) and
preexponential factors (A) for the relevant chemical kinetics.
Allowing both E and A to vary freely and independently of each
other would result in many cases where the reaction in question

Table 3. CCK Submodels

submodel name model form
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essentially did not occur, and many others where it occurred
orders of magnitude too rapidly, rendering the analysis
physically meaningless. Choosing a value for the first parameter
in any set of correlated parameters reduces the physically
reasonable range of the other parameters, but this effect is
particularly import in the case of the Arrhenius form kinetics.

The exponential form found in Arrhenius kinetics is a specific
example of a mathematical form common even outside of
kinetic systems and is shown in eq 14. In general, the
exponential term changes rapidly with small changes in the
exponential parameter “b”, but “y” is relatively tightly
constrained, which in turn sharply prescribes acceptable values

Figure 1. Predicted (lines) and measured (points) particle temperatures of 90 μm initial char diameter North Antelope coal particles in 12% O2. The
error bars represent the spread of approximately 95% of the data. Data are from Greier et al.7

Figure 2. Predicted (lines) and measured (points) particle temperatures of 90 μm initial char diameter North Antelope coal particles in 24% O2. The
error bars represent the spread of approximately 95% of the data. Data are from Greier et al.7
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of “a” once b is chosen. This complicates sensitivity analyses
because often it is unknown exactly which bounds y should
have, as is the case in this system of eight reaction equations
interrelated by Langmuir−Hinshelwood-type kinetics.

=y a bexp( ) (14)

However, the analysis can still be executed in a useful
manner. Because the analysis seeks to determine the
importance of a given reaction pathway (not the importance
of A or E individually), reducing kinetic parameters to one
parameter per reaction does not limit the usefulness of the
sensitivity analysis. Instead, the one free parameter is allowed a
sufficient range to express all feasible values of y without
allowing any physically meaningless pairs of a and b (or in the
specific case of kinetics, A and E). The analysis in fact indicated
that the most important parameters were often kinetic
parameters. This is to be expected and served as a useful
final check of the analysis codes, but does not offer much in the
way of new insight, so the kinetic parameters were optimized
and fixed at stationary values. The kinetic parameters were
therefore excluded from the sensitivity analysis, which is
desirable because while these kinetic parameters are highly
sensitive, reliable, general correlations for coal oxidation and
gasification kinetic parameters do not exist. Therefore, a
precise, predictive code must fit the kinetic parameters using
data relevant to the specific combustion scenario. The kinetic
parameters for the surface reaction resulting from this curve fit
were held constant for the subsequent sensitivity analyses,
reducing the number of parameters to 27. Note that the
optimized kinetic parameters are not a unique solution (as is
typically the case of all but the simplest optimizations) and that
different nominal values of the fundamental parameters could
shift the optimized kinetic values. However, no reasonable
nominal values would significantly reduce the sensitivity of the
kinetic parameters, and no reasonable values of the kinetic

parameters would result in a radically different sensitivity
analysis.
Also note that the word “fit” here does not imply the simple

linearization of a global equation that results in a slope and
intercept that correspond to values of the activation energy and
preexponential factor. Because of the great complexity of the
model, the fit was obtained by fixing all parameter values except
for the kinetic parameters of eqs R3 and R7, and using
MATLAB fmincon optimization software to minimize the error
between the data and the model prediction, where the data
were divided into particle size “bins” to minimize the error
introduced by a range of particle sizes. All other kinetic
parameters are directly related to the values of the parameters
of eqs R3 and R7, as in the other most recent iterations of
CBK-type codes.5,8,9 Examples of the fit of particle temperature
data during char conversion in an oxy-fuel environment are
shown in Figures 1−3. Table 4 shows the optimized kinetic
parameters.
Also note that the error bars in Figures 1−3 show two

standard deviations from the mean; while the error bars are
quite wide, this is a result a significant particle-to-particle
variation rather than actual measurement error. That is, the
particles vary substantially in diameter and ash content (and

Figure 3. Predicted (lines) and measured (points) particle temperatures of 90 μm initial char diameter North Antelope coal particles in 36% O2. The
error bars represent the spread of approximately 95% of the data. Data are from Greier et al.7

Table 4. Optimized Kinetic Parameters.a

coal type
EA,7

(kJ/mol)
EA,3

(kJ/mol) A7 (s
‑1) A3 (unitless)

Black Thunder 239 151 1.00 × 1011 6.64 × 108

North Antelope 248 152 1.75 × 1011 3.62 × 109

Utah Skyline 230 156 5.00 × 1011 2.42 × 1011

Pittsburgh 259 161 1.16 × 1011 6.64 × 108

aNote that because E’s and A’s are strongly correlated, these are only
one of several sets of possible values where a larger (or smaller) EA
may be compensated for by a larger (or smaller) A value.
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therefore combustion temperature), so the standard deviation
bars actually show the range of roughly 95% of the data, rather
than actual measurement error, which is on the order of 20 K.
The single, solid line is for one particle size and one ash
fraction, while the error bars show the range of prediction
curves expected for the entire range of ash content and particle
sizes. The model fit to the data is (in high-O2 cases) quite poor,
and the data do not show late-stage particle cooling as would be
expected. The inadequate fit is partially due to particle-to-
particle variation but mostly a result of inadequate treatment of
oxy-fuel conditions by the model, and a potential skew
introduced by the data collection system (particles that are
too small or too cool are not detectable in this system).
Similarly, the late-stage burnout particles are likely not observed
because they have cooled below the detection threshold.
Because the CCK code was not originally intended for oxy-coal
conditions, it is unsurprising that the submodels are not entirely
appropriate; the main purpose of this work is in fact to
highlight the submodels most in need of improvement. Figure 1
shows a very acceptable fit within the range of data (as might be
expected with a more conventional O2 concentration), while
predictions in Figures 2 and 3 do not agree well with the data,
indicating the need for substantial model changes in typical
oxy-coal conditions.
4.2. Determination of Parameter Ranges. The next step

of the analysis was to determine simulation input values for
each parameter, along with a range of permissible values. The
range of permissible values was used to set up a Latin

hypercube sampling scheme. The hypercube accepts as inputs
the allowed range and probability distribution of each
parameter. The range is then divided into a specified number
of equiprobable intervals, and one value of the parameter is
chosen randomly from each interval. For example, if 10
intervals were chosen, the parameter space would be divided
into 10 pieces. In the case of a uniform probability distribution,
each of these 10 parameters would be of equal “length” in
parameter space, while in the case of a normal distribution, the
intervals very near the mean value would be quite short in
terms of parameter space and the intervals in the tail would be
extremely long. Because each interval has a single value sampled
from it, most of the samples would cluster around the mean,
and the low-probability sample space would be relatively
sparsely covered. This process is repeated for each parameter,
and the values are then randomly paired.14 The result is a
matrix in which each column contains randomly ordered,
unbiased, space-filling samples from the range of some
parameter, and each row is a complete set of all necessary
input parameters for a single computational experiment. The
number of columns equals the number of parameters, and the
number of rows equals the number of specified intervals, and is
the number of computational experiments to be performed.
Thus, a higher number of rows more carefully explores the
parameter space but requires additional computational time
that scales linearly with n (the number of rows in the
experimental matrix).

Table 5. Parameters of the Sensitivity Analysis

parameter description min max nominal

VASTM ASTM volatiles; well-known for common coalsa −1% +1% various
xash Ash (dry basis); well-known for common coalsa −1% +1% various
xC C (daf); well-known for common coalsa −1% +1% various
xH H (daf); well-known for common coalsa −1% +1% various
DP0 initial raw coal diameter (used mean value of a known size cut, and sufficient variation to capture the bulk of the

size spread)b
−20% +20% various

EA mean activation energy of char annealing from CBK (kcal/mol), with ranges chosen from the scatter in the
data10

5.0 40 16.4

EC activation energy in the CO/CO2 production ratio model; wide uncertainty from CBK 8 (cal/mol)12b −50% +50% 9,000
dgrain size of ash grains in the char particle (micrometers);5,10 bounds exceptionally wide because the parameter is

thought to be relatively unimportant and extreme cases test that theory
0.1 10 5

VHT high-temperature volatile release 1.1VASTM 1.3VASTM 1.2VASTM

n1 oxidation reaction order;9 wide variation in data for this parameter, so entire range allowed 0 1 1
P pressure of the combustion system (atm); CCK code most suited for roughly atmospheric pressure experiments 0.9 1.1 1
φaf ash−film porosity10 0 0.5 0.17
tr char particle residence time (s); case specific and largely of interest to observe the sensitivity of late burn out to

the uncertainty in short residence times
various various various

TP0 initial coal particle temperature (K); room temperature values for raw coal and about 1300 K for cases when the
model is initiated post-devolatilization

300 1500 300

α mode of burning parameter; various conditions spannable across entire range of the mode of burning.

=ρ
ρ

α

( )m
m0 0

0 1 various

λa thermal conductivity of the ash (cal/(cmasaK); value likely unimportant so extreme range used to test this
theory

0.001 0.01 0.005

ψ random pore model parameter19 1 19 4.6

ψ= − − −S
S

X X(1 ) (1 ln(1 ))
o

ρa density of the ash (gm/cm3) 2 3 2.65
ρc density of the coal (gm/cm3) 1.2 1.4 1.3
σEA standard deviation of the activation energy distribution for char annealing (kcal/mol)10 1.5 1.65 1.58

τ/f random pore model tortuosity parameter5 1 24 12
d/d0 particle swelling (diameter/initial particle diameter) 0.9 1.1 various

aAbsolute percent. bRelative percent.
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The Latin hypercube design matrix was used to perform
10,000 experiments for 12 different sets of experimental
conditions (i.e., four coals and three O2 conditions). The
sensitivity analysis was found to be well-converged at this
number of computer experiments. The very large number of
parameters to be explored (and their exponentially greater
pairwise and higher interactions) made for extremely noisy
computational experiments, and 10,000 runs where necessary
to clearly and consistently determine the pattern of sensitivity.
The results of each set of 10,000 experiments were evaluated
using three methods: a simple scatter plot, a partial rank
correlation coefficient, and a linear approximation. The scatter
plot simply plots the values of a given parameter on the abscissa
and the values of the output on the ordinate axis. Because of the
large number of parameters, the resultant graphs were,
unsurprisingly, entirely obscured by the noise described
above, and hence the results are not shown. The other two
methods are more robust and yielded satisfactory results,
discussed below.
4.3. Linear Approximation Design. The modified linear

approximation design followed the method described by
Frenklach et al.15 and Box and Draper,16 adjusted for a Latin
hypercube set of experiments. The linear approximation was a
global design as described by Saltelli et al.17,18 with the goal of
prioritizing input parameters conducted throughout the entire
parameter space of each variable. The linear approximation
method calculates an “importance measure” for each parameter,
which roughly indicates the rate that a change in input induces
a change in output. Here, the importance measure simply
means a normalized score that indicates how influential a given
parameter is in the model, on a scale from zero to one. The
analysis entailed the following steps:
(1) Determine physically reasonable ranges for each

parameter. In this case, the ranges were determined from a
combination of literature searches and past experience with
char burnout. The parameters of interest and their descriptions
are given in Table 5 with additional columns to include
maximum and minimum allowed values.
(2) Create an n × p input matrix X of experiments where

each column contains the n input values for one particular
variable needed to conduct n experiments. This was done with
the MATLAB lhsdesign function to create a Latin hypercube of
the parameters as described in section 3.
(3) Execute the model once for each of the n experiments

and store the outputs of interest. Here, the outputs were the
total burnout of the particle and the temperature of the particle
at each quartile of residence time.
(4) Scale the input matrix X values so that they range

between −1 and 1. This is accomplished by either linear or
logarithmic scaling as appropriate, and is desirable to improve
the numerical stability of computations involving large matrices.
(5) Append a column of ones to matrix X, which accounts

for the free parameter (the intercept) in a system of linear
equations and improves the linearized fit.
(6) Solve for the importance measure a by multiple linear

regression using X × a = b, where X is the n × p matrix of
scaled inputs and b is the vector of n outputs from the n
computational experiments. Each value in the vector a is
normalized to range from 0 to 1, where higher numbers
indicate greater importance for the corresponding parameter in
matrix X.
The above procedure merits a number of comments and

explanations. First, Table 5 shows the bounds of the various

inputs to be varied in the global sensitivity analysis. In general,
the bounds on any given parameter are wider than necessary to
capture the variation of a single experiment, which allows them
to capture the range of uncertainty seen in the body of char
combustion research. Specific details are given where needed in
the table. Also, the kinetic parameters are not shown, as they
were initially determined to be highly sensitive parameters and
then fixed at optimized values for all of the analyses shown in
this work.
Also note that the system is solved by linear regression,

implying that each parameter has a linear impact on char
burnout and particle temperature. This is not entirely true,
resulting in a degree of fitting error, but each parameter was
checked by performing a series of model executions where only
the parameter in question was adjusted over its range while all
others remained at their nominal values. In these computations,
a straight line reasonably approximated the vast majority of
changes in output vs changes in input, and the exceptions were
excluded from the analysis. Here, “reasonably” approximated by
a line means that a linear fit was adequate to examine the
sensitivity of the parameter but not necessarily adequate to
precisely track changes in output induced by the change to the
input in question. Those few cases that were not reasonably
linear together with those that were unsuitable for partial rank
correlation (see below) constituted roughly 5% of the data and
were excluded from the analyses.
The multiple linear regression was used to solve eq 15 where

X is the n × p matrix of parameter values, a is the vector of
importance measures for each of the p parameters, and b is the
vector of n outputs from the n computational experiments. The
simplified case of a single computational experiment results in
eq 16, where the more traditional output y replaces the vector
b. The partial derivative of y with respect to the ith parameter
yields eq 17, which shows that the ith importance measure is
the derivative of the output with respect to the ith parameter, or
in other words the slope of the output in the direction of the ith
parameter. On a normalized scale of inputs between −1 and 1,
the importance measure is approximately a measure of how
rapidly a change in the ith input induces a change in the output
y, and because the rate is constant over a scaled parameter
space, it is also a measure of the magnitude of the total change
in output.

× =X a b (15)

+ + + =x a x a x a y... p p1 1 2 2 (16)

∂
∂

=
y
x

a
i

i
(17)

In p dimensions (for the p parameters in the sensitivity
analysis), eq 18 is the solution to eq 12 and is identical to
setting the gradient of eq 19 equal to zero, or minimizing the
sum-squared-of-error in all p dimensions (where the error is the
residual between the actual CCK output and the linearized
model prediction for the CCK output). The solution vector a is
therefore the best estimate of the importance measures in that
it minimizes the difference between the regression predictions
and the actual results of the model. The vector a is analogous to
the slope of the change in output related to the change in input
but differs in that it captures some influence of the higher order
effects of all other parameters (i.e., ai is not the same as would
be found by simply varying parameter i in isolation and finding
the slope at the minimum and maximum of the allowed values
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of parameter i. Figure 4 is a block logic diagram of the
sensitivity analysis process.

= ′ ′−a X X X b( ) 1
(18)

∑ ∑= = −r y f x aSSE ( ( , ))
i

i
i

i i
2 2

(19)

4.4. Partial Rank Correlation Coefficients. Partial rank
correlation coefficients (PRCC), or Spearman correlation
coefficients, establish the degree of monotonic relation between
outputs and inputs after taking into account the effects of other
input parameters, with +1 indicating perfectly monotonic,
positive correlation, while −1 indicates perfectly monotonic
anticorrelation.20 PRC coefficients were found in three steps.
First, the residuals were found by solving a series of multiple
linear regressions where eq 15 is solved repeatedly without one
of the p columns (where each column contains values of one of
the p parameters needed to execute the CCK code). This series
of regressions results in a series of models, each missing one of
the parameters. The difference between the predictions from
the full model and the predictions from the model missing the

ith parameter are the ith residuals, because they are the portion
of the model that cannot be explained without the ith
parameter. Second, after the residuals are calculated, they are
ranked by assigning the number 1 to the lowest valued residual,
the number 2 to the second lowest value, and so forth until n
(the integer number of experiments) is assigned to the highest
value. This step is also applied to the predicted output of
interest, b (burnout or particle temperature). The third and
final step is to calculated the correlation coefficient for the
residuals, as in eq 20.21 This sensitivity measure captures
nonlinear effects of the input parameters on the output,
provided the effects are monotonic and the inputs have no
significant correlation with each other. As mentioned above, the
small fraction of the data that failed to meet these criteria was
excluded from the analysis.

ρ
σ σ

= X Ycov( , )
X Y

X Y
,

(20)

It is also worth noting that while the PRCC method is
designed to rank the monotonic correlation of individual

Figure 4. Logic diagram to find the sensitivity measure for a given output.

Table 6. Total Sensitivity Measures for All O2 Conditions and Each Individual Condition

sensitivity

mean sensitivity measure for yO2
= 0.12 for yO2

= 0.24 for yO2
= 0.36

variable importance variable importance variable importance variable importance

EA 0.74 EA 0.76 EA 0.72 EA 0.75
n1 0.51 n1 0.55 n1 0.51 n1 0.48
d/d0 0.27 d/d0 0.40 d/d0 0.22 α 0.22
α 0.20 dgrain 0.20 α 0.22 σEA 0.20
dgrain 0.20 tr 0.18 dgrain 0.21 dgrain 0.19
σEA 0.18 α 0.18 σEA 0.17 d/d0 0.17
tr 0.14 σEA 0.17 tr 0.12 tr 0.11
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variables, it cannot perfectly discount the effects of other
variables or the misfit of the full model. The high number of
replicates helps to overcome this noise, but a parameter that
induces a small change in outputs will probably not have as
high a sensitivity ranking as a parameter that induces an
exponential shift, even if the smaller change is more perfectly
monotonic, because the small change is far more likely to be
lost in the noise. The PRCC measure is therefore somewhat of
a measure of the magnitude of the change induced in an output
parameter.

5. RESULTS AND DISCUSSION

Simulations of four coals at each of three conditions for two
different sensitivity tests of 27 parameters resulted in
approximately 5,000 sensitivity measures, and a plethora of
relevant comparisons. To make direct comparisons of all
sensitivity measures, the linear approximation importance
measures were normalized to range between 0 and 1, and the
absolute value was taken of PRC coefficients, so they indicate
only a magnitude of importance, not correlation or
anticorrelation. Relevant subsets of the sensitivity analysis are
discussed below.
5.1. Total Sensitivity at Various O2 Concentrations.

Table 6 shows the total sensitivity scores (the mean of all
sensitivity scores over all experiments and conditions) of the
seven most important variables in the CCK code at all coals at
all conditions, for all outputs, and for a combination of both
PRCC and linear approximation tests. It also shows the total
sensitivity for each of the three O2 levels tested.
The scores shown in the “importance” column are the mean

scores for the seven most important variables as measured from
all the various combinations of conditions and analysis
techniques. Note that although residence time (tr) is not
typically thought of as a model parameter, the quartile of
residence time was included as a parameter in the sensitivity
analysis codes to differentiate between sensitivity early in
burnout and late in burnout. Residence time, along with the
other six parameters shown in Table 6, are also the most
sensitive in each individual analysis (with a minor exception
discussed below). The same two variables are always of highest
importance and always have the same relative position: mean
annealing activation energy (EA) and the order of the oxidation
reaction (n1). As such, these two parameters will be referred to
as having primary importance, while the other five variables will
be referred to as secondary, and the remaining 20 are
considered to have tertiary importance. Though the seven
most sensitive variables are the same in all analyses, and they
share many common trends in sensitivity scores from one
analysis to the next, there are several interesting differences in
each group of analyses.

In the case of the analyses of each O2 mole fraction shown in
Table 6, the particle swelling/raw coal initial diameter (d/d0)
becomes less important as O2 concentration increases. The
swelling and initial diameter parameters were lumped together
because they are so closely linked in the CCK code, and in all
other cases they parallel each other quite closely, but in the case
of varying O2 concentration the decreased importance of d/d0 is
largely due to the decreased impact of the initial particle
diameter. This decreased importance is due to higher O2

concentrations rapidly (too rapidly to be realistic in fact)
consuming the bulk of the carbon, leaving an ash-rich char
particle with less variability in particle size for most of the
residence time. Similarly, the importance of residence time
steadily decreases with O2 concentration because the carbon is
converted quite quickly at high-O2 levels, so late-stage burnout
has progressively less variability.

5.2. Sensitivity for All Coal Types and All Combustion
Conditions. The subset of the sensitivity analyses for all coal
types and combustion conditions are shown in Table 7,
including the mean scores for sensitivity to particle temperature
and burnout (averaged between PRCC and linear approx-
imation tests), and the breakdown for the PRCC and linear
approximation sensitivity tests (averaged between sensitivities
for both burnout and particle temperature). The two outputs
(burnout and particle temperature) are most sensitive to the
same seven variables but differ somewhat in the ordering of
those variables. Note that the particle temperature predictions
are considerably less sensitive than burnout predictions to EA
and d/d0. The annealing parameters are likely more important
in burnout because the kinetics they control determine how
quickly the particle reaches low reactivity in late-stage burnout,
but the relatively reactive particle in early burnout is both
heated by initially rapid combustion and cooled by relatively
high gasification rates, lessening the effects of high reactivity on
particle temperature. Similarly, d/d0 affects the surface area
available, but while this affects burnout substantially, the
combination of endothermic and exothermic reactions again
lessens the reactivity effects on particle temperature. On the
other hand, the mode of burning parameter (α) is
approximately 250% more important in particle temperature
prediction than the burnout prediction, and the ash grain
diameter is nearly four times more important. This is because α
is indicative of the combustion regime (zone I, II, or III), which
is fixed in the model for the entire system, but potentially
different between the endothermic and exothermic reactions,
and ash grain diameter (dgrain) is most important in late-stage
burnout as the ash film model reduces reaction rates and allows
other system parameters to significantly affect the temperature,
while burnout is nearly complete in that region and not as
heavily impacted.

Table 7. Mean Total Sensitivity for Particle Temperature, Burnout, PRCC, and Linear Approximation

sensitivity for particle burnout sensitivity for particle temperature sensitivity for PRC coefficients sensitivity for linear approximation

variable importance variable importance variable importance variable importance

EA 0.82 EA 0.58 EA 0.62 EA 0.90
n1 0.53 n1 0.50 n1 0.43 n1 0.62
d/d0 0.34 dgrain 0.31 d/d0 0.26 d/d0 0.28
σEA 0.21 α 0.29 α 0.16 dgrain 0.26
α 0.12 d/d0 0.20 dgrain 0.15 α 0.24
tr 0.11 tr 0.17 σEA 0.13 σEA 0.23
dgrain 0.08 σEA 0.16 tr 0.13 tr 0.15
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5.3. Subbituminous vs High-Volatile Bituminous
Coals. Comprehensive char combustion codes should ideally
function for all coal types, so it is particularly relevant to
compare the prediction sensitivity for multiple coals and coal
types. The data were for two high-volatile bituminous and two
subbituminous coals, and Table 8 compares their total

importance measures and the breakdown between PRCC and
the linear approximation. The total importance is an average
between the PRCC and linear approximation methods,
weighted by the number of importance measures in each.
The subbituminous and high-volatile bituminous coals are

striking in how closely they parallel each other in each of the
three breakdowns above, with one exception. The subbitumi-
nous coal exhibits much higher sensitivity to the order of the
oxidation reaction than the high-volatile bituminous coals,
probably because the subbituminous coal is more reactive and
oxidation is the dominant conversion reaction. Note that, in the
CCK code, oxidation is governed by a Langmuir−Hinshel-
wood-type reaction in which n1 is the reaction order of one of
the three reactions that constitute the oxidation reaction
expression. Coal conversion data suggest that n1 should be
between 0 and 1, with the value depending on the reaction
temperature. In a global reaction expression, the value of n1
would change according to the combustion regime, while, in
the CCK code, the Langmuir−Hinshelwood expression adjusts
the weight of the term containing n1 depending on conditions
to appropriately capture the change in apparent order.8,22

Table 8 also highlights a difference between the PRCC and
linear approximations also seen in Table 7; the linear
approximation generally gives markedly higher sensitivity
measures than the PRCC method. This is not unexpected
since the two sensitivity tests do not measure the same thing, so
they should not have exactly the same sensitivity. The linear

approximation test is reporting the rate that the outputs change
due to a change in a given input, while the PRCC method is
reporting the degree of monotonic behavior in the change
induced in an output by a change in input and also indicates the
rough magnitude of that change (because small changes are
likely to get lost in the noise). The two methods together give a
more complete view of the model and here indicate that the
rate of change is generally slightly greater than the
monotonicity of the change.

5.4. Sensitivity at Quartiles of Residence Time. The life
of a coal particle in an oxy-coal system includes a period of
heating/devolatilization, rapid initial reaction, potential addi-
tional heating or cooling depending on relative concentrations
of reactive gases, and late-stage burnout. It is reasonable to
expect different model parameters to be important at different
burnout stages, so Table 9 summarizes the model sensitivity at
each quartile of residence time.
The sensitivity scores in Table 9 show a slight trend for

model sensitivity to n1 to decrease at later quartiles, which, as
alluded to above, is unsurprising since most of the carbon has
been consumed as burnout progresses, giving other model
parameters relatively greater importance. The residence time on
the other hand shows the opposite trend; tr becomes more and
more important at later quartiles. Most striking, however, is the
change induced by particle swelling. The sensitivity to d/d0 is
quite large for the first and second quartiles but less important
in late stages of burnout, which also is to be expected since the
bulk of the carbon is eaten away at high tr, leaving an ash-rich
particle. Note that the first quartile included a minor exception
to the sensitivity trends and showed that the O2 concentration
(which was allowed to vary up to 10% of the total O2 mole
fraction) had a sensitivity measure of 0.12, displacing tr from
the list of most important variables. However, the importance
value for tr in the first quartile was left in the table for
comparative purposes.

5.5. Additional Discussion. The most influential param-
eters are discussed below.

5.5.1. Thermal Annealing. Both thermal annealing sub-
model parameters are in the top seven parameters, and the
mean activation energy is consistently the most sensitive
variable. Also, the annealing submodel currently in use is
extremely rapid and does not distinguish between active sites,
despite evidence that the active complex for each of the three
main carbon conversion paths is distinct.9,10 The initial rapid
pace of the annealing submodel is not necessarily problematic,
since it is a result of a somewhat unrealistic distributed
activation energy. The most advanced annealing submodels use
a distribution of activation energies to capture the numerous
reactions involved in thermal annealing, and these submodels
are largely reconcilable with each other,23 but they include

Table 8. Mean Total Sensitivity for Particle Temperature
and Burnout Using Either the PRCC or Linear
Approximation Method for Different Coal Types

importance

subbituminous bituminous

variable total PRCC linear approx total PRCC linear approx

EA 0.72 0.66 0.89 0.76 0.58 0.99
n1 0.67 0.56 0.82 0.4 0.31 0.50
d/d0 0.24 0.24 0.24 0.29 0.27 0.31
α 0.21 0.16 0.26 0.2 0.16 0.24
dgrain 0.20 0.15 0.27 0.2 0.14 0.25
σEA

0.17 0.15 0.19 0.19 0.12 0.26

tr 0.13 0.12 0.14 0.14 0.13 0.16

Table 9. Sensitivity Scores by Quartile of Residence Time

quartile 1 quartile 2 quartile 3 quartile 4

variable importance variable importance variable importance variable importance

EA 0.73 EA 0.72 EA 0.77 EA 0.76
n1 0.59 n1 0.52 n1 0.48 n1 0.46
d/d0 0.40 d/d0 0.29 α 0.23 α 0.22
dgrain 0.18 α 0.21 dgrain 0.21 dgrain 0.21
α 0.16 dgrain 0.20 σEA 0.20 σEA 0.20

σEA
0.15 σEA 0.19 d/d0 0.19 tr 0.19

tr 0.10 tr 0.11 tr 0.15 d/d0 0.18
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unrealistic tails in the distribution. In the case of the activation
energy employed in CBK and its offshoots, the log-normal
distribution has a portion of annealing reactions with such low
activation energies that they occur instantaneously. This
problem could be solved by truncating the distribution, but
there is no clear-cut truncation point, and since the distribution
is consistent, it does not invalidate the model as a whole, as
long as the gasification preexponential factors are calibrated in
conjunction with the annealing parameters.
However, the same submodel has appeared in successive

models without necessarily accounting for the relation between
initial preexponential factors and annealing model parameters.
The particular annealing model in CBK and its successors is
presented by Hurt et al.10 as formulated by Suuberg,24 and,
contrary to the enormous impact seen in the sensitivity analysis,
past experience has shown relatively small influence due to
annealing, especially in late burnout.12,25 Furthermore, the
current annealing model fails to account for the dominant
effects of peak particle temperature, particle heating rate, and
coal precursor. These preparation conditions and differences in
coal chemistry radically change the annealing activation energy
distribution,25,26 but the prior model has no method to
incorporate this information and was developed prior to
sufficient available data to reasonably predict changes in the
reaction pathway based on preparation conditions. It is likely
that an entirely new annealing model is needed so that char
annealing occurs along a more realistic path and distinguishes
between gasification and oxidation reactive sites.
5.5.2. Reaction Order. The global oxidation reaction order

(n1) likely changes depending on the temperature regime, but
should lie between 0 and 1.7,8 The three-step oxidation model
can switch between the different reaction orders at various
temperatures, so despite the sensitivity of this parameter, it is
appropriate in the current Langmuir−Hinshelwood-type kinetic
scheme.
5.5.3. Residence Time. The residence time, while important,

is experimentally measured or an input from the simulation and
does not rely on submodels, so it should of course be carefully
measured, but does not impact the model construction. It was
explored as a sensitive parameter only to observe how
important uncertainty in residence time might be. Given that
char burnout experiments tend to have relatively low burnout
and short residence times (except in TGA systems), the high
sensitivity of this parameter to small changes is worth noting.
5.5.4. Ash Inhibition. The ash inhibition submodel originally

outlined by Hurt et al.10 is currently used in the CBK offshoots
and depends on dgrain. This submodel relies on building on ash
film, which immediately begins to reduce the combustion rate.
However, a more sophisticated model developed by Niu and
Shaddix27 allows ash to build a film and to diffuse back into the
carbon core and effectively dilute the carbon in later stages of
burnout. This model may be more realistic and may better
explain late-stage burnout data.
5.5.5. Mode of Burning. The mode of burning parameter

describes the changes in diameter and density and is related to
combustion regime. Currently, the model uses only one regime
for all reactions and the entire computation, which gives
contradictory results for either gasification or oxidation
occurring simultaneously. α is very commonly used in
carbonaceous particle combustion models to describe the
shrinking particle and decreasing particle density, but the value
of α is given as a constant throughout burnout. Haugen et al.,28

developed a much more realistic model that uses the

effectiveness factor to appropriately weight mass loss between
the particle exterior surface and the interior surface (diameter
vs density change). All combustion models that have sufficient
detail to capture changing particle size and density would be
improved by similarly allowing that change to depend on the
effectiveness factor, which varies throughout burnout. In the
case of oxy-coal, this modification is especially impactful
because CO2 and H2O reactions are more important than in
conventional air-fired coal combustion, and gasification
reactions have very different effectiveness factors than the
oxidation reaction.

5.5.6. Particle Swelling. The swelling and initial diameter
require a better swelling model, such as the model developed
by Shurtz et al.29 to allow for high heating rates and pressure.
Currently the swelling model in the CCK code is quite crude
and does not adequately account for radical changes in swelling
with coal type and char preparation conditions. Also, any
comprehensive combustion model is likely to be too expensive
to directly include in a CFD model, so the swelling model will
likely be used to train global models to the specific conditions
in question. Because pulverized coal has a distribution of
particle sizes, the training code should be run for a series of size
bins, sufficiently refined so that particle size is no longer a
significant source of uncertainty in the trained global model.

6. CONCLUSIONS AND RECOMMENDATIONS
A sensitivity analysis of an advanced char conversion model
(CCK) was performed based on data for two subbituminous
and two high-volatile bituminous coals in an oxy-coal
environment. The results were analyzed using a linear
approximation sensitivity analysis method and the partial rank
correlation coefficients method. These analyses revealed the
expected importance of kinetic parameters. However, after the
kinetic values were found from an optimized fit with data, the
subsequent set of analyses found that the two most important
parameters were the activation energy of char annealing (EA)
and a reaction order (n1). Five other parameters were found to
be of secondary importance: initial char diameter (d/d0), ash
grain size (dgrain), distribution of the activation energy for
annealing (σEA), the quartile of residence time (tr) distinguish-
ing early burning behavior from late burning behavior, and the
mode of burning parameter (α) which controls diameter and
density change. These seven variables are prime candidates for
future research to improve the accuracy and predictive power of
the CCK char conversion code (and comprehensive char codes
in general). These results imply a need to carefully quantify and
minimize the uncertainty in the seven most sensitive variables.
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