
Radiative Heat Transfer Calculation on 16384
GPUs Using a Reverse Monte Carlo Ray Tracing

Approach with Adaptive Mesh Refinement
Alan Humphrey

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT, 84112 USA
Email: ahumphrey@sci.utah.edu

Todd Harman
Department of Mechanical Engineering

University of Utah
Salt Lake City, UT, 84112 USA

Email: t.harman@utah.edu

Daniel Sunderland
Sandia National Laboratories

PO Box 5800 / MS 1418
Albuquerque, NM, 87175 USA

Email: dsunder@sandia.gov

Martin Berzins
Scientific Computing and Imaging Institute

University of Utah
Salt Lake City, UT, 84112 USA

Email: mb@sci.utah.edu

Abstract—Modeling thermal radiation is computationally chal-
lenging in parallel due to its all-to-all physical and resulting
computational connectivity, and is also the dominant mode of
heat transfer in practical applications such as next-generation
clean coal boilers, being modeled by the Uintah framework.
However, a direct all-to-all treatment of radiation is prohibitively
expensive on large computers systems whether homogeneous or
heterogeneous. DOE Titan and the planned DOE Summit and
Sierra machines are examples of current and emerging GPU-
based heterogeneous systems where the increased processing
capability of GPUs over CPUs exacerbates this problem. These
systems require that computational frameworks like Uintah lever-
age an arbitrary number of on-node GPUs, while simultaneously
utilizing thousands of GPUs within a single simulation. We show
that radiative heat transfer problems can be made to scale within
Uintah on heterogeneous systems through a combination of
reverse Monte Carlo ray tracing (RMCRT) techniques combined
with AMR, to reduce the amount of global communication. In
particular, significant Uintah infrastructure changes, including a
novel lock and contention-free, thread-scalable data structure for
managing MPI communication requests and improved memory
allocation strategies were necessary to achieve excellent strong
scaling results to 16384 GPUs on Titan.

Keywords-Uintah; Radiation Modeling; Titan; Reverse Monte
Carlo Ray Tracing; Mesh Refinement; GPU; Scalability

I. INTRODUCTION

The need to solve larger and more complex simulation
problems while at the same time not incurring higher and
higher power costs has led to an increasing focus on GPU and
Intel Xeon Phi-based architectures. Many existing and most
emerging high performance computing (HPC) systems rely
on such architectures. In the case of the DOE Titan system,
with a theoretical peak performance of 27 petaflops, over
90% of the computational power come from its 18,688 GPUs.
These heterogeneous systems pose significant challenges in

terms of programmability due to deep memory hierarchies,
vendor-specific language extensions and memory constraints,
e.g. less device-side memory compared to host memory per
node. To preserve current capabilities on upcoming machines
and to solve larger and more complex simulations on existing
machines, HPC codes must effectively leverage manycore
architectures. In this paper we focus on the changes to Uintah
needed to leverage GPU-based architectures such as DOE
Titan and the proposed DOE Summit, for large-scale calcu-
lations. To achieve good performance on these architectures,
it is important that algorithms and codes effectively leverage
an arbitrary number of GPUS on-node while simultaneously
utilizing all GPUs available in an allocation, potentially thou-
sands.

The Uintah development effort aimed at using these GPU-
based machines at scale is driven by the target problem of the
University of Utah Carbon Capture Multidisciplinary Simula-
tion Center (CCMSC), funded by the NNSA Predictive Sci-
ence Academic Alliance Program (PSAAP) II. The CCMSC
aims to simulate through petascale and eventually exascale, a
1000MWe oxy-fired clean coal boiler being developed by Al-
stom Power to deliver high efficiency electric power generation
with carbon capture. A primary CCMSC focus is on using
extreme-scale computing for reacting, large eddy simulation
(LES)-based codes within the Uintah open source framework,
using machines like Titan and the upcoming Summit system
in a scalable manner. The physical size of the CCMSC target
boiler simulations necessitates the use of systems like DOE
Titan at near-capacity to adequately resolve the computational
domain in a tractable amount of time.

Radiation is the dominant mode of heat transfer in these
boiler simulations, and because radiative heat transfer rates are
generally proportional to the fourth power of the temperature

[1], applications such as the CCMSC boiler simulations that
simulate a turbulent combustion process, are highly influenced
by the accuracy of the radiation models used.

The CCMSC has been actively pursuing the use of photon
Monte Carlo (PMC) methods, originally considered in [1] and
more specifically reverse Monte Carlo ray tracing (RMCRT),
initially developed in [2] and [3] to compute radiative heat flux
and its divergence. RMCRT naturally incorporates scattering
physics and also lends itself to scalable parallelism due to the
mutual exclusivity of the rays. Each ray or ray bundle may
be traced independently, making PMC approaches an ideal
candidate for GPU parallelization. This is in stark contrast
to the discrete ordinates method (DOM) [4], currently used
within Uintah, which is computationally expensive, involves
multiple global, sparse linear solves and presents challenges
with the incorporation of scattering physics.

A principal challenge in modeling radiative heat transfer
is the strong nonlocal nature of radiation, with potential
propagation of radiation across the entire domain from any
point. For our RMCRT model, this translates to an all-to-all
communication requirement that replicates the boiler geometry
on each node to facilitate local ray tracing. We address this
challenge by leveraging Uintah’s adaptive mesh refinement
(AMR) capabilities, using Cartesian mesh patches to generate
a fine mesh that is only used locally (close to each grid point)
and a successively coarser mesh is used further away, via a
level-upon-level approach. This approach is fundamental to
the CCMSC target problem, where the entire computational
domain needs to be resolved to adequately model the radiative
heat flux. Using this approach, we previously showed excellent
strong scaling to over 256k CPU cores on the DOE Titan
system for problem sizes that were previously intractable with
a single fine mesh (single-level) RMCRT approach due to on-
node memory constraints [5]. This scaling was consistent with
the communication and computation model in [5].

The challenges in moving from a CPU to a GPU-based
multi-level RMCRT algorithm using this mesh refinement
approach have extended well beyond what a typical GPU port
of a CPU code might entail. In the case of the Uintah open-
source framework, additional complexities are posed by these
architectures based on a core Uintah design that focuses on
insulating the application developer from the underlying archi-
tecture. Thus in the context of heterogeneous systems, Uintah’s
asynchronous task-based paradigm requires that all host-to-
device and device-to-host data copies for computational task
dependencies (inputs and outputs), as well as device context
management must be handled automatically in the same way
MPI messages are generated by the Uintah runtime system, as
shown in [6] and [7].

The current Uintah model has departed from an MPI-only
approach and now employs a shared memory model on-node
[7], [8]. This combination of MPI + Pthreads, and in the
presence of GPUs, also Nvidia CUDA, all coupled with shared
data structures and the use of MPI THREAD MULTIPLE
(where all CPU threads perform their own MPI sends and
receives), creates an environment for potential race conditions

and deadlock scenarios, some of which only manifest at larger
scale in our experience and are routinely difficult to debug.

This work focuses on how we have addressed the challenges
involved with this mixed concurrency environment to scale
this difficult globally-coupled, all-to-all problem to 16,384
GPUs on the DOE Titan system, showing this approach to be
feasible in production boiler calculations on current and future
GPU-based heterogeneous architectures. This result has been
achieved through a focused progression, starting first with our
work shown in [6] to achieve basic GPU task scheduling and
execution. This work implemented a proof-of-concept, single-
level GPU RMCRT algorithm and heterogeneous task sched-
uler and runtime system within Uintah, and was the origin
of this work. Second in this progression was our preliminary
multi-level RMCRT work, focusing on CPU scaling, where in
[5] we demonstrate excellent strong scaling to over 256K CPU
cores on the DOE Titan system. The specific contributions
made by this work in moving from a CPU to a GPU-based
multi-level RMCRT algorithm are the extensive modifications
to the Uintah infrastructure necessary to achieve the GPU
scaling results shown in Section V. A more in-depth study
of CPU vs GPU performance will be part of future work.

These contributions are:

(i) Leveraging Uintah’s AMR infrastructure in a novel way
to reduce the volume of communication sufficiently so as to
allow scalability. Uintah’s AMR capabilities are introduced in
Section II, along with an overview of Uintah.

(ii) Changing the way that AMR meshes are stored on the
GPU to overcome the limited available GPU global mem-
ory. This has entailed a significant extension of the Uintah
GPU DataWarehouse system [9] to support a mesh-level
database, a repository for shared, per-mesh-level variables such
as global radiative properties. This has allowed multiple mesh
patches, each with associated GPU tasks, to run concurrently
on the GPU while sharing coarse, radiation mesh data. This
extension of the GPU DataWarehouse is discussed in Sec-
tion III, which also gives an overview on radiation transport
and describes our GPU-based multi-level RMCRT model.

(iii) The introduction of novel non-blocking, thread-scalable
data structures for managing asynchronous MPI commu-
nication requests, replacing previously problematic Mutex-
protected vectors of MPI communication records. To be non-
blocking a wait, failure, or resource allocation by one thread
cannot block progress on any other thread. Non-blocking data-
structures are lock-free if at all steps at least one thread is
guaranteed to make progress, and are wait-free if at any step
all threads are guaranteed to make progress [10]. Section IV
describes these changes and their motivation, and also shows
speedups in local MPI communication times made possible
through these infrastructure improvements.

(iv) A vastly improved memory allocation strategy to reduce
heap fragmentation is covered in Section IV, that allows
running simulations at the edge of the nodal memory footprint
on machines like Titan.

(v) Determining optimal fine mesh patch sizes to yield GPU
performance while maintaining over-decomposition of the
computational domain to hide latency. This is covered in
Section V where we provide strong scaling results over a wide
range of GPU counts up to 16,384 GPUs, and also show the
results of differing patch configurations across this range of
GPUs

An overview of related work is given in Section VI, and the
paper concludes in Section VII with future work in this area.

II. THE UINTAH CODE

The Uintah open-source (MIT License) software has been
widely ported and used for many different types of problems
involving fluids, solids and fluid-structure interaction problems
[11], with the latest release in January 2015 [12]. Uintah
consists of a set of parallel software components and libraries
that facilitate the solution of partial differential equations on
structured AMR grids. Uintah presently contains four main
simulation components: 1.) the multi-material ICE [13] code
for compressible flows; 2.) the particle-based code MPM [14]
for structural mechanics; 3.) the combined fluid-structure in-
teraction (FSI) algorithm MPM-ICE [15] and 4.) the ARCHES
turbulent reacting CFD component [16] that was designed for
simulating turbulent reacting flows with participating media ra-
diation. Uintah is highly scalable [17], runs on many National
Science Foundation (NSF), Department of Energy (DOE) and
Department of Defense (DOD) parallel computers on a broad
class of problems.

Uintah is unique in its methods and its use of a directed
acyclic graph (DAG) approach as part of a production-strength
code in a way that is coupled to a runtime system. Uintah’s
design maintains a clear partition between applications code
and its runtime system, making it possible to achieve great
increases in scalability through changes to the runtime system
without changes to the applications themselves.

Particular advances made in Uintah include highly scalable
AMR using Cartesian mesh patches [17]. A key factor in
improving performance has been the reduction in MPI wait
time through the dynamic and even out-of-order execution of
task-graphs [18]. The need to reduce memory use in Uintah led
to the adoption of a nodal shared memory model in which there
is only one MPI process per multicore node, and execution of
tasks is on individual cores through Pthreads [19]. As a result,
Uintah has demonstrated scalability to 768K cores on complex
fluid-structure interactions with AMR. Uintah’s thread-based
runtime system [19] uses decentralized execution of the task-
graph, implemented by each CPU core requesting work itself
and performing its own MPI. A lock-free shared memory
abstraction through Uintah’s DataWarehouse approach [19]
was implemented using atomic operations, allowing efficient
access by all cores to the shared data on a node. Finally, the
nodal architecture of Uintah has been extended to run tasks on
one or more on-node accelerators [6] by using a multi-stage
queue architecture to organize work for CPU cores and GPUs
in a dynamic way, and is the starting point for this paper.

A. The ARCHES Combustion Simulation Component

The ARCHES component within the Uintah computational
framework was designed for the simulation of turbulent re-
acting flows with participating media radiation. It is a three-
dimensional, Large Eddy Simulation (LES) code described in
[20]. ARCHES uses a low-Mach number (M < 0.3), variable
density formulation to model heat, mass, and momentum
transport in reacting flows.

ARCHES is the primary CCMSC simulation component,
and solves the coupled mass, momentum and energy conser-
vation equations on a staggered finite-volume mesh for the gas
and solid phase with combustion [16], [21]. The discretized
equations are integrated in time using an explicit, strong-
stability preserving second or third-order Runge-Kutta method
[22]. Spatial discretization is handled with central differencing
where appropriate for energy conservation or flux limiters (eg,
scalar mixture fractions) to maintain numerical accuracy. The
low-mach, pressure projection formulation requires a solution
of sparse linear system at each timestep using the Hypre linear
solver package [23]. The turbulent subgrid velocity and species
fluctuations [24] are modeled with the dynamic Smagorinsky
closure model. The solution procedure solves the intensity
equation over a discrete set of ordinates and, like the pressure
equation, is formulated as a linear system that is solved using
Hypre. Research using ARCHES has been done on radiative
heat transfer using the parallel discrete ordinates method [4]
(DOM, a modeling method developed at Los Alamos National
Laboratory for neutron transport) and the P1 approximation to
the radiative transport equation [25]. Work done by Sun [2]
and Hunsaker [3] has shown that Monte Carlo ray tracing
methods are potentially more efficient and offer an alternative
to DOM.

III. RMCRT MODEL

Scalable radiation modeling plays a key computational role
in applications such as heat transfer in combustion simulations
[20], neutron transport modeling [26] in nuclear reactors and
astrophysics modeling, and is generally considered one of
the most challenging problems in large-scale computational
science and engineering due to the global nature of radia-
tion. For heat transfer problems such as the CCMSC boiler
simulations, coupling combustion and radiation poses several
numerical challenges. The fluid mechanics of combustion are
an inherently local phenomena, wherein conservation laws
may be applied over a finite volume. Radiation however, is
a long-distance phenomenon due to strong nonlocal effects.
Because of these nonlocal effects, conservation laws cannot
be applied over an infinitesimal volume, but must be applied
over the entire computational domain, creating difficulties for
domain decomposition due to the need for nonlocal data.

A. Radiation Transport Models

The heat transfer problem arising from the clean coal boilers
being modeled by the ARCHES component [16] within the
Uintah framework has thermal radiation as the dominant heat
transfer mode and involves solving the conservation of energy

equation (1) and radiative heat transfer equation (RTE) 2
simultaneously. A critical quantity of interest for all boiler
simulations is the heat flux to the surrounding walls, as
the major mode of heat transfer in the coal-fired boiler is
radiation. In the context of the CCMSC, the design of new
boiler facilities utilizing ultra super critical air-combustion
technology will require accurate radiative heat flux estimates
in environments with increased CO2 concentrations, higher
temperatures and different radiative properties for new metal
alloys. Thermal radiation in the target boiler simulations is
loosely coupled to the computational fluid dynamics (CFD)
due to time-scale separation.

ARCHES is designed to solve the mass, momentum, mix-
ture fraction, and thermal energy governing equations inherent
to coupled turbulent reacting flows. ARCHES has relied pri-
marily on a DOM solver [4] to compute the radiative source
term in the energy equation shown by:

cv
dT

dt
= −∇ · (κ∇T)− p∇ · v + Φ +Q′′′ −∇ · qr (1)

where cv is the specific heat, T is the temperature field, p is
the pressure, κ is the thermal conductivity, v is the velocity
vector, Φ is the dissipation function, Q′′′ is the heat generated
within the medium, e.g. chemical reaction, and ∇·qr is the net
radiative source [5]. A radiatively participating medium can
emit, absorb and scatter thermal radiation. The energy equation
is then conventionally solved by ARCHES (finite volume) and
the temperature field, T is used to compute the net radiative
source term. This net radiative source term is then fed back
into the energy equation (for the ongoing CFD calculation)
which is solved to update the temperature field, T [5].

A particular limitation of DOM is false scattering. This
is a due to spatial discretization error, similar to numerical
diffusion in CFD calculations. A ray that is traced through
the enclosure by DOM will gradually widen as it moves
farther away from its point of origin. False scattering can be
addressed by using a finer mesh of control volumes, but at
greater computational cost [1].

Recent work has shown that Monte Carlo ray tracing
(MCRT) methods are potentially more efficient [3], [2]. Tradi-
tional forward MCRT approaches are inefficient though, in that
large numbers of traced rays may not reach the subdomain of
interest. Both DOM and MCRT methods aim to approximate
the radiative transfer equation (2), the equation describing
the interaction of absorption, emission and scattering for
radiative heat transfer, which is an integro-differential equation
with three spatial variables and two angles that determine
the direction of ŝ [27]. For MCRT methods, a statistically
significant number of rays (photon bundles) are traced from
a computational cell to the point of extinction, that is, until
their radiative intensity falls below a specified threshold. This
method is then able to calculate energy gains and losses for
every element in the computational domain.

Reverse Monte Carlo ray tracing (RMCRT), the focus of this
work, is an emission-based reciprocity method, where rays are

traced backwards from the detector, thus eliminating the need
to track ray bundles that never reach the detector [28]. Rather
than integrating the energy lost as a ray traverses the domain
as in forward MCRT approaches, RMCRT integrates the
incoming intensity absorbed at the origin, where the ray was
emitted. RMCRT is more amenable to domain decomposition,
and thus Uintah’s parallelization scheme due to the backward
nature of the process [2], and the mutual exclusivity of the
rays themselves. The process is considered reverse through the
Helmholtz Reciprocity Principle, e.g. incoming and outgoing
intensity can be considered as reversals of each other [29].

dI(ŝ)

ds
= ŝ∇I(ŝ)

= kηI − βI(ŝ)

+
σs
4π

∫
4π

I(ŝ)Φ(ŝi, ŝ)dΩi,

(2)

In equation 2, kη is the absorption coefficient, σs is the
scattering coefficient, dependent on the incoming direction
s. β is the extinction coefficient that describes total loss in
radiative intensity, I is the change in intensity of incoming
radiation from point s to point s + ds and is determined
by summing the contributions from emission, absorption and
scattering from direction ŝ and scattering into the same di-
rection ŝ. Φ(ŝi, ŝ) is the phase function that describes the
probability that a ray coming from direction si will scatter into
direction ŝ and integration is performed over the entire solid
angle Ωi [28], [27]. Though a method for modeling spectral
effects has been considered, currently we are using a mean
absorption coefficient approximation (σs) in combination with
the mean optical path length, and hence not resolving spectral
frequencies, e.g. η for wavelength. Adding spectral frequencies
to RMCRT would entail adding a loop over wave-lengths, η
and is part of future work.

B. RMCRT and Ray Tracing Overview

The principal motivation for the development of a GPU-
based RMCRT radiation calculation arises from the compu-
tational intensity of the radiation solve in the CCMSC pro-
duction runs, consuming as much as 50% of the overall CPU
time per timestep when using DOM. Additionally this work is
motivated by access to large-scale GPU-based machines like
DOE Titan, where over 90% of the available FLOPS are on the
GPUs. Many of the CCSMSC target simulations will run on
Titan over its life span. Beyond this, utilization of the planned
DOE Summit system is planned.

RMCRT uses rays more efficiently than forward MCRT, but
it is still an all-to-all method, for which all of the geometric in-
formation and radiative properties for the entire computational
domain must be accessible by every ray [2]. These radiative
properties consist of; κ, the absorption coefficient, a property
of the medium the ray is traveling through, σT 4, a physical
constant σ· temperature field, T 4 and, cellType (boundary or
flow cell), a property of each computational cell in the domain.
In our approach, the boiler geometry is replicated on each

node and ray tracing takes place without the need to pass ray
information across nodal boundaries (via MPI) as rays traverse
the computational domain. Our RMCRT approach is afforded
the choice of replication due to the relative simplicity of the
boiler geometry.

To address these communication challenges, we have devel-
oped a multi-level AMR approach for both CPU [5] and now
GPU, in which a fine mesh is only used close to each grid
point and a successively coarser mesh is used further away,
significantly reducing MPI message volume and nodal memory
footprint. This algorithm allows for the radiation computation
to be performed with an appropriate mesh resolution while
still being coupled with other physics components. The LES
CFD, particle transport and particle reactions are solved on a
different mesh resolution appropriate to their physics and mod-
els. This balanced approach to coupling multiphysics is made
possible by Uintah’s AMR design. The amount of data stored
on every computational patch is significantly reduced, and the
computational overhead for successively finer computation is
eliminated when not needed.

C. Multi-Level GPU Implementation

Following our original proof-of-concept GPU task scheduler
introduced in [6], a single-level CPU and GPU RMCRT
approach was initially considered. This approach was to begin
comparisons against the current DOM solver within the Uintah
ARCHES component, using the benchmark problem described
by Burns and Christon in [30]. Accuracy studies of this single-
level RMCRT approach are shown in [3] for this benchmark,
which examines the accuracy of the computed divergence of
the heat flux and shows expected Monte Carlo convergence
when compared to the published data in [30]. In this approach,
the quantity of interest, the divergence of the heat flux, ∇q is
calculated for every cell in the computational domain. The
entire domain was replicated on every node (with all-to-all
communication) for the radiative properties. This replication
occurred on the single fine mesh, which for Ntotal mesh cells,
the amount of data communicated is O(N2

total).
Though this single, fine mesh approach was highly accurate

and effective at lower core and GPU counts, problem sizes
beyond 2563 were intractable for highly resolved domains,
especially on machines with less than 2GB of memory per
core. GPU scalability results were shown up to 64 GPUs
through the work done in [6] to achieve basic accelerator
task scheduling and execution. Using a problem size of 1283,
the volume of communication coupled with the PCIe transfers
begins to dominate, and the GPUs were starved for work with
only a single patch per GPU. These difficulties led to the use
of an AMR approach that uses a mesh hierarchy to limit the
amount of communication on CPU architectures [5].

Figure 2 in [5] best illustrates this approach with a 2-D
diagram of three-level mesh refinement scheme, illustrating
how a ray from a fine-level patch (right) might be traced across
a coarsened domain (left). In general, the data required by
our multi-level RMCRT algorithm from the fine CFD mesh,
is projected to all coarse levels subject to a user-defined

refinement ratio (typically 2 or 4), where each coarse level
spans the entire domain. Our general multi-level RMCRT ray
marching process is described in detail in [5], which includes
a precise model of communication and computation.

A significant challenge in moving to a GPU-based, multi-
level RMCRT algorithm is the limited amount of global
memory available on the current generation of GPUs found
on Titan. These Nvidia K20X models have 6GB compared to
32GB CPU host-side. The Uintah DataWarehouse design
automatically generates MPI messages and keeps multiple
versions of variables for out-of-order scheduling and execution
[18], as different tasks may require the same variable on the
same neighboring patch multiple times for differing ghost cell
requirements. Tasks may also need input variables prior to
modification. In order to support these and other scenarios, the
“on-demand” DataWarehouse provides the application the
illusion it has access to memory it does not actually own (via
the task input specification, where the ghost cell requirement is
specified). In the context of our multi-level RMCRT radiation
model, this is a global halo, or “infinite ghost cell” requirement
on all coarse levels. Because of this design, data from the
coarser levels is retrieved from the Uintah DataWarehouse
for each fine level patch on a node. This presents problems
for a limited memory footprint as on Titan’s K20X GPUs.

Our solution to this problem has been to effectively short-
circuit the creation of these redundant global copies of the
radiative properties on the host and their subsequent transfer
across the PCIe bus to the GPU. This has been achieved by
a significant extension of the Uintah GPU DataWarehouse
system [9] to support a level database that stores a single copy
of shared global radiative properties (per-mesh level based on
Uintah’s level-upon-level approach to AMR). Our solution has
effectively minimized PCIe transfers and ultimately allowed
multiple mesh patches, each with GPU tasks, to run concur-
rently on the GPU while sharing data from the coarse radiation
mesh. This design leverages the two copy engines available on
the K20X GPUs and also makes use of support for running
multiple, concurrent kernels. Using these features, Uintah can
copy data for multiple fine-mesh patches to the GPU, each
sharing a global copy of the coarsened radiative properties.

Data for these GPU tasks can be simultaneously copied to-
and-from the device as multiple RMCRT kernels run simul-
taneously. CUDA Streams, managed by the Uintah infras-
tructure provide additional concurrency, as operations from
different streams can be interleaved.

IV. INFRASTRUCTURE IMPROVEMENTS

Uintah uses an “MPI + X” approach, a combination of MPI
+ (Pthreads + Nvidia CUDA). This mixed concurrency model
has the potential for problematic race conditions and deadlock
scenarios, some of which only manifest at larger scale in our
experience. Significant infrastructures changes were necessary
to improve nodal throughput and to expose more concurrency
while maintaining correctness within this complex environ-
ment. In particular it was necessary to choose optimal data
structures and algorithms to efficiently expose concurrency,

as well as to maintain critical sections around legacy serial
data structures. Furthermore, it was vital for Uintah to manage
limited resources such as nodal memory through the use of
custom allocators that allow frameworks like Uintah to choose
more optimal allocation policies for different objects to better
utilize available resources and improve nodal throughput.

A. Multi-Threaded Processing of Asynchronous MPI

Uintah currently uses MPI THREAD MULTIPLE (which
to the best of our knowledge is rarely adopted by MPI users),
which allows individual threads to perform their own MPI
sends and receives. Initial attempts to run at large scale
with accelerators in this environment exposed a subtle race
condition in the shared vector used to process outstanding
MPI Requests via MPI_Testsome(), which was protected
by a Pthread write-lock. This race scenario involved multiple
threads simultaneously processing the same received message,
with all threads allocating a buffer for the same MPI message,
and only one thread actually processing the message and in-
voking the callback to deallocate its buffer. Other threads may
have allocated buffers which were never released, resulting in
a severe memory leak in the Uintah infrastructure, causing the
application to quickly fail at large-scale due to out of memory
errors on the compute nodes.

Though this scenario was present in other simulations, it
was only evident at large scale, and only significant within our
RMCRT radiation model due to the high volume and size of
MPI messages. Despite this, the approach to multi-threaded
processing of asynchronous MPI within Uintah had worked
seemingly well for all cases until now.

A more coarse-grained critical section was not feasible as
it would have serialized a substantial portion of the algorithm.
The solution ultimately required a fundamental redesign in
the data structure and algorithm used to manage MPI com-
munication records in a multi-threaded environment. The new
algorithm leverages a novel wait-free pool, which is thread-
scalable and contention-free, to store individual MPI requests.
The wait-free pool iterator is implemented as a unique, move-
only object which toggles an atomic flag to protect access
to the referenced value to prevent data races, i.e. multiple
threads modifying the same value. Using C++11 features
(atomics, move constructor, move assignment, and disabling
copy construction and copy assignment) to implement a unique
protected iterator, that guarantees no two threads can have
iterators which dereference to the same object. MPI_Test()
is then used on each request individually in contrast to the prior
design which used MPI_Testsome() to test a collection
of requests. This solution, outlined in Algorithm 1 results
in much simpler code with fewer allocations, eliminates the
complexity of managing the previously used locked vectors of
MPI_Request objects and their related critical sections.

In our experience, achieving multi-threaded correctness and
performance requires different algorithm and data structure
choices. This is illustrated in our example by moving to the
use of MPI_Test() from multiple/many threads and away

Algorithm 1 Wait-free MPI Request pool

1: RecvCommList& recv list = m recv lists[id];
2: auto ready request =
3: [](CommNode const& n)→bool{return n.test();};
4: iterator = recv list.find any(ready request);
5: if (iterator) then
6: MPI Status status;
7: iterator→finishCommunication(m comm, status);
8: recv list.erase(iterator);
9: end if

from the complexity of managing data structures designed for
the use of MPI_Testsome().

B. Memory Allocation and Management Strategy

After identifying and addressing the race condition de-
scribed above, our RMCRT benchmark problem [30] still
failed at scale due to memory-related issues, though it ran
longer before failure. Further investigation revealed that ex-
treme heap fragmentation was occurring when running our
RMCRT benchmark problem. Persistent small allocations
mixed with transient large allocations fragmented the heap
such that it grew continually, acting as though a significant
memory leak still existed. Using Google’s tcmalloc [31], a
highly scalable memory allocator for multi-threaded appli-
cations, reduced heap fragmentation but the mixture of per-
sistent and transient allocations still resulted in unacceptable
fragmentation. Furthermore, frequent small allocations from
multiple threads also caused a performance degradation due
to contention of shared resources. The performance of the
infrequent large allocations was not a factor in the overall
performance.

1) Custom Allocators to Reduce Fragmentation: Devel-
oping and using custom allocator classes for Uintah’s MPI
buffers and GridVariables (simulation variables that re-
side on Uintah’s Cartesian mesh patches at cell centers, nodes
or faces x,y,z), allowed us to leverage our knowledge of
how a data structure would be used to distinguish between
large/small and transient/persistent allocations which greatly
improved memory utilization and reduced fragmentation.

To eliminate the observed heap fragmentation, we developed
allocators to address the range of allocation sizes which
were causing the fragmentation. For large allocations, we
completely avoided the heap by implementing a specialized
allocator that uses mmap to allocate anonymous virtual mem-
ory. While mmap is a system call and can be slower than a
standard malloc, it was more important to avoid fragmenting
the heap than to optimize the throughput of large allocations.
Throughput was not a concern for the performance of large
allocations, but it is critical for frequent small allocations.
To manage our small transient objects, i.e. objects that are
frequently created and destroyed, we developed a lock-free
memory pool on top of our mmap allocator to avoid the heap
and to maximize throughput. All other infrequent allocations
are still managed using the heap.

 0.1

 1

 10

512 1024 2048 4096 8192 16K

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

Nodes

Comparison of Local Communication Times

Before changes (stock code)
After changes (branch code)

Fig. 1. Comparison of the local communication time (sec) before and after
infrastructure improvements.

With these custom allocators, Uintah is now better able
to manage memory requirements by designing for specific
needs and requirements to reduce fragmentation and increase
throughput when necessary. As the scope of problem sizes
increase and simulations are pushed to the full capacity of
available resources, specific management strategies and algo-
rithms must be developed to better use available resources.
Generic algorithms are no longer sufficient to accommodate
the bleeding edge that high performance computing lives on.

Using these techniques, portions of Uintah infrastructure
code related to communication were significantly simplified,
and nodal throughput was improved by a factor of 2-4X in
processing local MPI communication (the time spent posting
MPI messages for individual threads). Figure 1 shows the
time spent doing local communication, before and after our
infrastructure improvements for our CPU implementation of
the Burns and Christon [30] RMCRT benchmark on Titan.
These runs were from 512 to 16,384 nodes, with a 2-level
problem with 136.31M cells, 5123 on the fine CFD mesh and
1283 on the coarse radiation mesh. There were 262k total mesh
patches in this problem.

Table I lists data from Figure 1 with times before and
after infrastructure improvements and the associated speedups.
More detailed information on communication frequency, as
well as average message volume, and latency for this radiative
heat transfer calculation is shown in [5]. The speedups shown
in Table I are a direct result of removing only a single
Mutex and related critical sections. We expect refactoring other
sections of infrastructure code to yield similar improvements.

TABLE I
LOCAL COMMUNICATION DATA SHOWN IN FIGURE 1.

Comparison in Local Communication Times
#Nodes 512 1k 2k 4k 8k 16k

Time (s) before 6.25 2.68 1.26 0.89 0.79 0.73
Time (s) after 1.42 1.18 0.54 0.36 0.30 0.23

Speedup (X) 4.40 2.27 2.33 2.47 2.63 3.17

V. SCALING STUDIES

In this section, we show strong scalability results on the
DOE Titan XK7 1 system for the Burns and Christon [30]
benchmark problem using the GPU implementation of the
multi-level mesh refinement approach. We define strong scal-
ing as a decrease in execution time when a fixed size problem
is solved on more cores, and weak scaling as the change in
execution time as the number of processors and problem size
vary proportionally to each other. We define parallel efficiency,
E as:

E =
Tserial

N ∗ Tparallel(N)
, (3)

where Tserial is the time to solution using 1 processing unit, N
is the number of processing units and Tparallel(N) is the time
to solve the same problem with N processing units. Weak
scaling results are not shown here due to the nature of the
growth in communication for this problem, specifically that ra-
diation or any globally coupled algorithm grows quadratically
as O(N2) (N is the number of communicating MPI ranks)
with respect to the problem size. Strong scaling is important
in our case as the CCMSC seeks to solve a fixed target problem
in a tractable amount of time using more compute resources.
To achieve this, the CCMSC needs the whole of machines like
Titan.

Figures 2 and 3 each show the performance and scalability
of the multi-level RMCRT:GPU algorithm for three patch
sizes. In each fine level cell in both problems, 100 rays were
used to compute the divergence of the heat flux. The number
of cells in a patch was varied, 163 (red), 323 (green), and
643 (blue). Each of the simulations consisted of a grid with 2
levels, and used a refinement ratio of 4 between the levels. All
simulations were run on the DOE Titan system, leveraging the
single GPU per node with Uintah’s hybrid, multi-threaded task
scheduler and runtime system originally designed and tested in
[7], [9] using 16 threads and 1 GPU per node. This scheduler
and runtime system has been heavily modified as outlined in
Section IV to achieve the results shown here.

For the simulation results shown in Figure 2, the total
number of cells in the domain was 17.04 million. The fine
level contained 2563 cells and the coarse level contained 643

cells. For the larger simulation results shown in Figure 3, the
total number of cells in the domain was 136.31 million. The
fine level contained 5123 cells and the coarse level contained
1283 cells. Using equation 3, the strong scaling efficiency of
the large benchmark problem (Figure 3) is 96% going from
4096 to 8192 GPUs, and 89% going from 4096 to 16,384
GPUs

1Titan is a Cray KX7 system located at Oak Ridge National Laboratory,
where each node hosts a 16-core AMD Opteron 6274 processor running at
2.2 GHz, 32 GB DDR3 memory and 1 NVIDIA Tesla K20x GPU with 6
GB GDDR5 ECC memory. The entire machine offers 299,008 CPU cores
and 18,688 GPUs (1 per node) and over 710 TB of RAM. Titan uses a Cray
Gemini 3D Torus network, 1.4 µs latency, 20 GB/s peak injection bandwidth,
and 52 GB/s peak memory bandwidth per node.

 1

 10

 100

 1000

16 32 64 128 256 512 1024 2048 4096

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

GPUs

2-Level Apadptive GPU-RMCRT: Strong Scaling
 Burns & Christon Benchmark

OLCF-Titan System

Medium: 256^3 cells, RR: 4
Unified scheduler, 16 threads/node, 1 GPU/node
100 rays per cell
Averaged over 7 timesteps

4096 patches

512 patches

64 patches

Cell per patch: 16^3

 32^3

 64^3

Ideal

Fig. 2. GPU Strong scaling of the MEDIUM 2-level benchmark RMCRT problem for 3 patch sizes on the DOE Titan system. Refinement ratio of 4 between
levels (RR:4). The fine CFD mesh contains 2563 cells, coarse radiation mesh contains 643 cells. Different patch sizes illustrate GPU speedup.

 1

 10

 100

 1000

256 512 1024 2048 4096 8192 16K

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

GPUs

2-Level Apadptive GPU-RMCRT: Strong Scaling
 Burns & Christon Benchmark

OLCF-Titan System

Large: 512^3 cells, RR: 4
Unified scheduler, 16 threads/node, 1 GPU/node
100 rays per cell
Averaged over 7 timesteps

32,768 patches4096 patches512 patches

Cell per patch: 16^3

 32^3

 64^3

Ideal

Fig. 3. GPU Strong scaling of the LARGE 2-level benchmark RMCRT problem for 3 patch sizes on the DOE Titan system. Refinement ratio of 4 between
levels (RR:4). The fine CFD mesh contains 5123 cells, coarse radiation mesh contains 1283 cells. Different patch sizes illustrate GPU speedup.

These results show in general that 1.) using larger patches
provides more work per GPU and yields a more significant
speedup, 2.) with the improvements to the Uintah infras-
tructure outlined in this work, we observe excellent scaling
through processing multiple patches per GPU and 3.) the
algorithm and implementation scales well to 16384 GPUs
as a result of the improvements made to Uintah through
our work. These results also offer a promising and scalable
approach to radiative heat transfer calculations for the CCMSC
target boiler problem on current and emerging heterogeneous
architectures.

VI. RELATED WORK

Much of the work done toward developing scalable radiation
transport models can be found in computational astrophysics
and cosmology, involving problems such as neutron star
merger, supernova and high energy density plasma. This work
is in the context of codes like ARWIN, the AZEuS adaptive
mesh refinement, magnetohydrodynamics fluid code, the more
general AMR-based FLASH code [32], based on oct-tree
meshes and the physics AMR code Enzo, [33]. At the national
labs, radiation codes such as RAMSES and PARTISN [34]
exist, but are not generally available or target problems like
neutron transport, as found in CRASH [35], a block adaptive
mesh code for multi-material radiation hydrodynamics. There
are also radiation transport problems that use CFD codes
and AMR techniques [36], [37], however, a broad range
of problems exist that require the concept of tracing rays
or particles, such as the simulation of light transport and
electromagnetic waves [5]. Much of the available literature on
GPU-based Monte Carlo ray tracing approaches to radiation
can be found in the Oncology community where GPUs are
used for radiation dose calculation [38].

There are overall very few cases of GPU usage at the scale
reported here. Gaburov, et al [39] have published results on
the evolution of the Milky Way galaxy, a calculation done
using 18600 GPUs on DOE Titan. Gray, et al [40] were one
of the first to take advantage of at least 8192 GPUs in parallel
with their Ludwig soft matter physics application. Many of
these reports involve stories concerning code-related issues
scaling on Titan and offer detailed discussion on how software
teams overcame significant code and algorithmic challenges in
porting their applications to GPU-based architectures.

VII. CONCLUSIONS AND FUTURE WORK

We have demonstrated through this work that radiative
heat transfer problems can be made to scale within Uin-
tah on current petascale heterogeneous systems through a
combination of reverse Monte Carlo ray tracing (RMCRT)
techniques combined with adaptive mesh refinement, to reduce
the amount of global communication. The results presented
here offer a promising approach to modeling radiative heat
transfer within Uintah. This approach aims to enable the Utah
CCMSC to run the target 1000MWe boiler problem on current
and emerging GPU-based architectures at large scale.

Through this work, we have shown the necessity of choosing
optimal data structures and algorithms to efficiently expose
concurrency. We have also illustrated how maintaining critical
sections around serial data structures in legacy code increases
code complexity and the likelihood of the introduction of dif-
ficult race conditions and deadlock scenarios, especially when
using mixed concurrency models, namely MPI + (Pthreads
+ Nvidia CUDA). Furthermore, we have shown the necessity
for frameworks like Uintah to better manage limited memory
through the use of custom allocators that allow us to choose
better allocation policies for different objects and to better
utilize available resources, improving nodal throughput.

The specific contribution in this work is the development of
a scalable radiation model for current and emerging heteroge-
neous architectures, made widely available through the Uintah
open-source framework. This contribution may also address
related problems with pervasive all-to-all type communications
and will be of importance to a broad class of users, developers,
scientists and students for whom such problems are presently
a bottleneck.

As part of future work, we plan to refactor more algo-
rithms within the Uintah infrastructure to use non-blocking
data structures over the mutex-like synchronization primitives.
Additionally we will extend the use of our custom memory
allocators and trackers to implement ways of tracking memory
allocations between scaling runs to identify allocation patterns
that do not scale. Work is currently underway to address co-
processor architectures, namely Intel Xeon Phi in preparation
for machines like DOE Cori and Aurora. This work will
leverage the Kokkos library [41] to achieve performance porta-
bility, requiring the extension of the Uintah runtime system to
support multi-threaded task execution.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the De-
partment of Energy, National Nuclear Security Administra-
tion, under Award Number(s) DE-NA0002375. This research
used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725. We would
like to acknowledge Oak Ridge Leadership Computing Facility
ALCC awards CMB109, “Large Scale Turbulent Clean Coal
Combustion” and CSC188, “Demonstration of the Scalability
of Programming Environments By Simulating Multi-Scale
Applications” for time on Titan. Additionally, we would like
to thank all those involved with Uintah past and present.

REFERENCES

[1] I. Veljkovic and P. E. Plassmann, “Scalable photon monte carlo
algorithms and software for the solution of radiative heat transfer
problems,” in Proceedings of the First International Conference on
High Performance Computing and Communications, ser. HPCC’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 928–937. [Online].
Available: http://dx.doi.org/10.1007/11557654 104

[2] X. Sun and P. J. Smith, “A parametric case study in radiative heat
transfer using the reverse monte-carlo ray-tracing with full-spectrum
k-distribution method,” Journal of Heat Transfer, vol. 132, no. 2, p.
024501, 2010.

[3] I. Hunsaker, T. Harman, J. Thornock, and P. Smith, “Efficient Paral-
lelization of RMCRT for Large Scale LES Combustion Simulations,”
paper AIAA-2011-3770. 41st AIAA Fluid Dynamics Conference and
Exhibit, 2011.

[4] G. Krishnamoorthy, R. Rawat, and P. Smith, “Parallel Computations
of Radiative Heat Transfer Using the Discrete Ordinates Method,”
numerical Heat Transfer, Part B: Fundamentals, 47 (1), 19-38, 2005.

[5] A. Humphrey, T. Harman, M. Berzins, and P. Smith, “A scalable algo-
rithm for radiative heat transfer using reverse monte carlo ray tracing,” in
High Performance Computing, ser. Lecture Notes in Computer Science,
J. M. Kunkel and T. Ludwig, Eds. Springer International Publishing,
2015, vol. 9137, pp. 212–230.

[6] A. Humphrey, Q. Meng, M. Berzins, and T. Harman, “Radiation
Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System,”
in Proceedings of the 1st Conference of the Extreme Science and
Engineering Discovery Environment (XSEDE 2012). ACM, 2012.

[7] Q. Meng, A. Humphrey, and M. Berzins, “The Uintah Framework:
A Unified Heterogeneous Task Scheduling and Runtime System,” in
Digital Proceedings of Supercomputing 12 - WOLFHPC Workshop.
IEEE, 2012.

[8] Q. Meng, M. Berzins, and J. Schmidt, “Using Hybrid Parallelism to
Improve Memory Use in the Uintah Framework,” in Proc. of the 2011
TeraGrid Conference (TG11), Salt Lake City, Utah, 2011.

[9] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Investigating
applications portability with the uintah dag-based runtime system
on petascale supercomputers,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 96:1–
96:12. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503250

[10] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[11] M. Berzins, “Status of Release of the Uintah Computational Frame-
work,” Scientific Computing and Imaging Institute, Tech. Rep. UUSCI-
2012-001, 2012.

[12] Scientific Computing and Imaging Institute, “Uintah Web Page,” 2015,
http://www.uintah.utah.edu/.

[13] B. Kashiwa and E. Gaffney., “Design basis for cfdlib,” Los Alamos
National Laboratory, Tech. Rep. LA-UR-03-1295, 2003.

[14] D. Sulsky, S. Zhou, and H. L. Schreyer, “Application of a particle-in-
cell method to solid mechanics,” Computer Physics Communications,
vol. 87, pp. 236–252, 1995.

[15] J. E. Guilkey, T. B. Harman, A. Xia, B. A. Kashiwa, and P. A. McMurtry,
“An Eulerian-Lagrangian approach for large deformation fluid-structure
interaction problems, part 1: Algorithm development,” in Fluid Structure
Interaction II. Cadiz, Spain: WIT Press, 2003.

[16] J.Spinti, J. Thornock, E. Eddings, P. Smith, and A. Sarofim, “Heat
transfer to objects in pool fires,” in Transport Phenomena in Fires.
Southampton, U.K.: WIT Press, 2008.

[17] J. Luitjens and M. Berzins, “Improving the performance of Uintah:
A large-scale adaptive meshing computational framework,” in Proc.
of the 24th IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS10), 2010.

[18] Q. Meng, J. Luitjens, and M. Berzins, “Dynamic task scheduling for the
uintah framework,” in Proceedings of the 3rd IEEE Workshop on Many-
Task Computing on Grids and Supercomputers (MTAGS10), 2010.

[19] Q. Meng and M. Berzins, “Scalable large-scale fluid-structure interaction
solvers in the Uintah framework via hybrid task-based parallelism
algorithms,” Concurrency and Computation: Practice and Experience,
2013. [Online]. Available: http://dx.doi.org/10.1002/cpe.3099

[20] P. J. Smith, R.Rawat, J. Spinti, S. Kumar, S. Borodai, and A. Violi,
“Large eddy simulation of accidental fires using massively parallel
computers,” in 18th AIAA Computational Fluid Dynamics Conference,
June 2003.

[21] J. Pedel, J. N. Thornock, and P. J. Smith, “Large eddy simulation of
pulverized coal jet flame ignition using the direct quadrature method
of moments,” Energy & Fuels, vol. 26, no. 11, pp. 6686–6694, 2012.
[Online]. Available: http://dx.doi.org/10.1021/ef3012905

[22] S. Gottlieb, C. Shu, and W. Tadmor, “Strong stability-preserving high-
order time discretization methods,” Siam Review, vol. 43, no. 1, pp.
89–112, 2001.

[23] R. Falgout, J. Jones, and U. Yang, “The design and implementation
of hypre, a library of parallel high performance preconditioners,”
in Numerical Solution of Partial Differential Equations on Parallel
Computers, ser. Lecture Notes in Computational Science and

Engineering, A. Bruaset and A. Tveito, Eds. Springer Berlin
Heidelberg, 2006, vol. 51, pp. 267–294. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-31619-1 8

[24] S. B. Pope, Turbulent Flows. Cambridge Press, 2000.
[25] G. Krishnamoorthy, R. Rawat, and P. Smith, “Parallelization of the P-1

Radiation Model,” numerical Heat Transfer, Part B: Fundamentals, 49
(1), 1-17, 2006.

[26] C. Clouse, “Parallel deterministic neutron transport with amr,”
in Computational Methods in Transport, ser. Lecture Notes in
Computational Science and Engineering, F. Graziani, Ed. Springer
Berlin Heidelberg, 2006, vol. 48, pp. 499–512. [Online]. Available:
http://dx.doi.org/10.1007/3-540-28125-8 25

[27] K. Viswanath, I. Veljkovic, and P. E. Plassmann, “Parallel load balancing
heuristics for radiative heat transfer calculations.” in CSC, 2006, pp.
151–157.

[28] M. F. Modest, “Backward Monte Carlo Simulations in Radiative Heat
Transfer,” Journal of Heat Transfer, vol. 125, no. 1, pp. 57–62,
2003. [Online]. Available: http://link.aip.org/link/JHTRAO/v125/i1/p57/
s1&Agg=doi

[29] B. Hapke, Theory of Reflectance and Emittance Spectroscopy.
Cambridge University Press, 1993, cambridge Books Online. [Online].
Available: http://dx.doi.org/10.1017/CBO9780511524998

[30] S. P. Burns and M. A. Christen, “Spatial domain-based parallelism in
large-scale, participating-media, radiative transport applications,” Nu-
merical Heat Transfer, Part B: Fundamentals, vol. 31, no. 4, pp. 401–
421, 1997.

[31] S. Lee, T. Johnson, and E. Raman, “Feedback directed optimization
of tcmalloc,” in Proceedings of the Workshop on Memory Systems
Performance and Correctness, ser. MSPC ’14. New York, NY, USA:
ACM, 2014, pp. 3:1–3:8. [Online]. Available: http://doi.acm.org/10.
1145/2618128.2618131

[32] B.Fryxell, K.Olson, P.Ricker, F.X.Timmes, M.Zingale, D.Q.Lamb,
P.Macneice, R.Rosner, J. Rosner, J. Truran, and H.Tufo, “FLASH an
adaptive mesh hydrodynamics code for modeling astrophysical ther-
monuclear flashes,” The Astrophysical Journal Supplement Series, vol.
131, pp. 273–334, November 2000.

[33] B. O’Shea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness,
and A. Kritsuk, “Introducing Enzo, an amr cosmology application,” in
Adaptive Mesh Refinement - Theory and Applications, ser. Lecture Notes
in Computational Science and Engineering, vol. 41. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 341–350.

[34] L. Los Alamos National Security, “Los Alamos National Labo-
ratory Transport Packages,” 2014, http://www.ccs.lanl.gov/CCS/CCS-
4/codes.shtml.

[35] B. van der Holst, G. Toth, I. Sokolov, K. Powell, J. Holloway et al.,
“Crash: A Block-Adaptive-Mesh Code for Radiative Shock Hydrody-
namics - Implementation and Verification,” Astrophys.J.Suppl., vol. 194,
p. 23, 2011.

[36] J. P. Jessee, W. A. Fiveland, L. H. Howell, P. Colella, and R. B. Pember,
“An adaptive mesh refinement algorithm for the radiative transport
equation,” Journal of Computational Physics, vol. 139, no. 2, pp. 380–
398, 1998.

[37] M. Pernice and B. Philip, “Solution of equilibrium radiation diffusion
problems using implicit adaptive mesh refinement,” SIAM J. Sci. Com-
put., vol. 27, no. 5, pp. 1709–1726, 2005.

[38] R. W. Townson, X. Jia, Z. Tian, Y. J. Graves, S. Zavgorodni,
and S. B. Jiang, “Gpu-based monte carlo radiotherapy dose
calculation using phase-space sources,” Physics in Medicine and
Biology, vol. 58, no. 12, p. 4341, 2013. [Online]. Available:
http://stacks.iop.org/0031-9155/58/i=12/a=4341

[39] J. Bédorf, E. Gaburov, M. S. Fujii, K. Nitadori, T. Ishiyama, and S. P.
Zwart, “24.77 pflops on a gravitational tree-code to simulate the milky
way galaxy with 18600 gpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
54–65. [Online]. Available: http://dx.doi.org/10.1109/SC.2014.10

[40] A. Gray and K. Stratford, Ludwig: multiple GPUs for a complex fluid
lattice Boltzmann application. Chapman and Hall/CRC, 2013.

[41] H. C. Edwards and D. Sunderland, “Kokkos array performance-
portable manycore programming model,” in Proceedings of the 2012
International Workshop on Programming Models and Applications
for Multicores and Manycores, ser. PMAM ’12. New York,
NY, USA: ACM, 2012, pp. 1–10. [Online]. Available: http:
//doi.acm.org/10.1145/2141702.2141703

