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The purpose of this paper is to address a number of concerns
that researchers have expressed when implementing the soot
model of Brown and Fletcher (10.1021/ef9702207).1 A more
common notation is presented here along with a table of units
for clarification. It is the hope of the authors that this notation
and associated clarifications will facilitate implementation of
this model.
Alexander J. Josephson and David O. Lignell have been

added as authors in this revision.
Some equation and notation changes are presented in this

revision. These changes are meant to reflect the original
implementation of this model and correct a few minor
inconsistencies in the orginal print. As a result, a reader may
implement this model from the information given in this
revision alone. Validation and simulation results have not
changed from the original paper.
For clarification, the steady-state Reynolds-averaged Navier−

Stokes equations for the conservation of soot mass, tar mass, and
soot particle number (eqs 4−6 in the original paper) are changed
by assimilating the gas density into the transport source terms.
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Definitions of variables and their units, in these and subsequent
equations, are given in Tables 1 and 2. Source terms in eqs 1−3 are
defined by
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where the r ̇ terms refer to formation (F), oxidation (O), gasi-
fication (G), and aggregation (AN) of either soot (C) or tar (T).
Equations 4−6 are consistent with equations presented by Brown.
Rates are defined as follows:
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Table 1. Transport Equation Source Terms

term A E (kJ/mol) source

N/A N/A source term for tar

rȮT 6.77 × 105 m3 kg−1 s−1 52.3 Shaw et al.2

rĠT 9.77 × 1010 s−1 286.9 Ma3

rḞC 5.02 × 108 s−1 198.9 Ma3

rȮC 1.09 × 105 kg K1/2 m−2 atm−1 s−1 164.5 Lee et al.4

rȦN N/A N/A Fairweather et al.5

Table 2. Table of Units Given for Clarification

term description unit

Ca collision frequency constant unitless

Cmin number of carbon atoms per incipient soot
particle

unitless

dp soot particle diameter m

k Boltzman’s constant J/K

MC molecular weight of carbon kg/kmol

Na Avogadro’s number kmol−1

NC soot particles per unit mass kg−1

pO2
partial pressure of oxygen atm

R ideal gas constant kJ mol−1 K−1

SAv,C surface area of soot per volume m2/m3

SNC
source term for the number of particles m−3 s−1

SPtar source term for tar kg m−3 s−1

SYC and SYT source term for the mass fraction of soot and tar,
respectively

kg m−3 s−1

T temperature K

u⃗ gas velocity m/s

YC, YT, and
YO2

mass fractions of soot, tar, and O2, respectively unitless

μ turbulent viscosity kg m−1 s−1

ρg density of gas kg/m3

ρC solid density of soot kg/m3

σ turbulent Schmidt number unitless
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Equations 7−13 include changes to accommodate the assimilation
of gas density into the overall respective source terms, clarify the
calculation of the surface area, and correct for some unit
inconsistencies. In these equations, the solid soot density is
assumed to be 1950 kg/m3 and SPtar should be calculated from a
separate coal devolatilization model. Table 1 shows Arrhenius
constants and activation energies for the source terms in the
transport equations (eqs 4−6), reproduced from the original table
published by Brown and Fletcher (10.1021/ef9702207), with a few
clarifications to match the units and equations presented here,
along with corrected references and a misprinted exponential.
While this addendum amends and clarifies some of the

equations and parameters originally published, to the authors’
knowledge, simulation results published in the original
document are still accurate.
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