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Abstract
To address the coding and software challenges of modern hybrid architectures, we propose an
approach to multiphysics code development for high-performance computing. This approach is
based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG)
representation of the problem to be solved that allows runtime algorithm generation. When cou-
pled with a large-scale parallel framework, the result is a portable development framework capable
of executing on hybrid platforms and handling the challenges of multiphysics applications. We
share our experience developing a code in such an environment - an effort that spans an interdisci-
plinary team of engineers and computer scientists.
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1. Introduction

If one thing can be said about the recent development in computing hardware it is volatility.
The changing landscape of hardware (multicore, GPU, etc. ) poses a major challenge for devel-
opers of high-performance scientific computing (HPC) applications. Additionally, the problems
being addressed by HPC are becoming increasingly complex, frequently characterized by large
systems of coupled Partial Differential Equations (PDEs) with many different modeling options
that each introduce additional coupling into the system. Such demands to handle multiphysics
complexity add another layer of difficulty for both application developers and framework archi-
tects.

Our goal is to sustain active development and conduct fundamental and applied research amidst
such a volatile landscape. We perceive the problem as having three key challenges:

• hardware complexity: characterized by writing code for new hardware and for different
programming models (e.g. threads),
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• programming complexity: characterized by writing code to represent discrete mathematical
operators and stencil calculations,

• multiphysics complexity: characterized by writing code that represents complex physical
phenomena.

The goal is then to develop a computational framework that allows application developers to

• write architecture-agnostic code,

• write code that mimics the mathematical form it represents,

• easily address multiphysics complexity and its web of nontrivial data dependencies.

In what follows, we review the software environment that allows us to address the aforemen-
tioned challenges.

2. Addressing Hardware and Programming Complexity: Nebo

Hardware complexity is the challenge of developing code for many computing architectures
such as CPUs and GPUs as well as different programming models such as Threads. To address
this challenge we considered the concept of a Domain Specific Language (DSL) and developed an
in-house DSL called Nebo [1].

Nebo is an embedded domain specific language (EDSL) designed to aid in the solution of
partial differential equations (PDEs) on structured, uniform grids. Because Nebo is embedded
in C++, it does not require two-phase compilation; rather, it uses template metaprogramming to
allow the C++ compiler to transform the user-specified code into code that effectively targets CPU
(including multicore) and GPU backends.

Nebo provides useful tools for defining discrete mathematical operators such as gradients,
divergence, interpolants, filters, and boundary condition masks, and can be easily extended to
support various discretization schemes (e.g. , different order of accuracy).

One of the many advantages of an EDSL is that it allows developers to write a single code
but execute on multiple backends, such as CPUs and GPUs, as well as other programming models
such as threads - all supported by Nebo.

Figure 1 shows the performance of assembling a generic scalar transport equation using Nebo
compared to two other major codes at the University of Utah where untuned C++ nested loops are
used. A speedup of up to 10x is achieved for a grid size of 1283. The comparisons were conducted
on the same architecture (2 x Intel Xeon 6-Core CPU E5-2620 @ 2.00GHz with 15 MB L3

Cache) using a single core and a single thread.
The threading performance of Nebo is shown in Fig. 2 where a standard scalar transport is

assembled using various memory sizes and across a wide range of threads. A speedup of up to
12x is achieved for the largest block size of 218 bytes on 12 threads.

Nebo is currently being used in two major application codes at the University of Utah: Arches
and Wasatch. Wasatch will be discussed at length in §5.
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Figure 1: Nebo speedup vs untuned C++ nested loops for assembling a generic scalar equation. Tests were
conducted on a single process for grid sizes ranging from 323 to 1283 points.
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Figure 2: Nebo thread speedup for different memoy block sizes in bytes.
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In the grand scheme of scalable computing, Nebo provides on-node fine-grained data paral-
lelism at the grid loop level. It can be used within task-driven execution (discussed in §3) and
within distributed-parallel frameworks (discussed in §4).

In addition to being platform-agnostic, Nebo provides a high-level, MATLAB-like interface
that allows application developers to express the intended calculation in a form that resembles the
mathematical model. The basic Nebo syntax consists of an overloaded bit shift operator separating
a left-hand-side (LHS) and a right-hand-side (RHS) expression. The requirement for a Nebo
assignment to compile is that the LHS and RHS expressions are of the same type. For example, if
a, b, and c are all fields of the same type (e.g. , cell centered variables in a finite volume grid), then

a <<= b + c

computes the sum of b and c. Nebo also supports all the basic C++ mathematical functions such
as sine and cosine along with all fundamental algebraic operations (+, -, *, and /). Nebo supports
absolute values as well as inline conditional expressions. This advanced Nebo feature provides a
powerful tool to assigning boundary conditions for example. A conditional statement simply looks
like

a <<= cond( cond1, result1)

( cond2, result2)

...

( default );

where cond1, cond2, result1, result2 ... default are all arbitrary Nebo expressions.
In addition, Nebo provides support for defining spatial fields on structured grids along with

ghost cell and boundary mask information. Probably the most important feature of Nebo is type
safety. Operations that result in inconsistent types will not compile. Nebo natively supports 17
field types which consist of four volumetric types corresponding to cell centered and x-, y-, and
z-staggered fields as well as particle fields. Each volumetric type requires three face field types,
namely, the x-, y-, and z-surfaces. Additional documentation on Nebo can be found at https:
//software.crsim.utah.edu/software/. The inner workings of Nebo have been discussed in
[1].

2.1. Stencil Operations
One of the many pitfalls of programming a numerical method for partial differential equations

is the coding of discrete mathematical operators (operators hereafter). These typically consist of
gradients, divergence, filters, flux limiters, etc. A standard implementation of a discrete operator is
accomplished via a triply nested ijk-loop with appropriate logic to get the fields to properly align
and produce a result of the appropriate type and location on a grid. This is often exacerbated by the
numerical scheme used and the presence of ghost cells. For example, finite volume approximations
typically store fluxes at volume faces and scalars at cell centers. The list goes on, and if one is
not cautious, it is easy to get caught up accessing corrupt memory and producing inconsistent,
incorrect calculations. These challenges make up what we refer to as programming complexity.

Nebo provides tools for representing discrete mathematical operators such as gradient, diver-
gence, and interpolant to list a few [2]. Operators are objects that consume one type of field

4

https://software.crsim.utah.edu/software/
https://software.crsim.utah.edu/software/


and produce another, depending on the stencil and type of discretization used. For example, an
x-gradient operator typically consumes a cell-centered volumetric type and produces a field that
lives on the x-surface of the cell-centered volumes. This can be written using Nebo syntax as

result <<= gradX(phi);

where phi is a cell centered field, gradX is a pointer to the gradient operator, and result is an
x-surface field.

Operators can be chained (inlined) as long as they produce the correct field type. For example,
the net contribution of the diffusive flux of a cell centered scalar is

result <<= divX( interpX(k) * gradX(phi) );

where, in this case, result is a cell centered field. Here, k is the diffusivity, interpX is an
operator that interpolates k to an x-surface location, and divX is a divergence operator. This
is allowed here because the product interpX(k) * gradX(phi) produces and x-surface field
while divX consumes an x-surface field and produces a cell-centered one.

In addition, Nebo can handle ghost cells automatically. Once a grid variable is declared and
allocated with an appropriate number of ghost cells, all subsequent operations using Nebo assign-
ments will automatically handle ghost cells. This includes annotating fields to include the number
of valid ghost cells in each direction, since ghost cells can be invalidated by application of stencil
operators. Note that ghost cell exchanges must happen outside of Nebo. As will be shown in §4,
this exchange takes place in Uintah.

For a list of supported fields, operators, and other details, the reader is referred to the Nebo
website located at: https://software.crsim.utah.edu/software. Note that Nebo is dis-
tributed under a library called SpatialOps.

3. Addressing Multiphysics Complexity: ExprLib

The traditional approach to designing computational physics software relies almost entirely on
specific algorithms and is usually tailored to meet the requirements of the application at hand. At
the outset, the code is executed in a systematic order that is specified a priori. This code sequence
is determined by the model specifics that are being used. Choosing a different model requires
an entirely different series of steps that often necessitate modification of the code. Codes that
are based on this model become complex and rigid when modified. This is what we refer to as
multiphysics complexity.

Multiphysics complexity is caused by a focus on the algorithm or the flow of data. This flow
of data represents a high level process and requires particular specification of task execution. To
reduce code complexity and rigidity, Notz et al. [3] introduced the concept of automated algo-
rithm generation for multiphysics simulations. Their software model is centered on exposing and
utilizing low level data dependencies instead of high level algorithmic data flow. The outcome con-
stitutes a shift in focus from the algorithm (which implies depencency among data) to explicitly
exposing the dependencies among data (which implies an algorithmic ordering).

Automatic algorithm generation is accomplished by first decomposing a differential equation
into basic expressions (e.g. convection or diffusion). Subsequently, these expressions are mapped
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as nodes in a directed acyclic graph (DAG) that exposes the network of data requirements. In the
last step, the graph is analyzed using graph theory to extract an appropriate solution algorithm. The
DAG multiphysics approach provides an avenue for automated algorithm generation and execution
by exposing task-level parallelism.

Our implementation of the multiphysics DAG approaches consists of a C++ library called
ExprLib. ExprLib provides the API for application developers to write physics as fundamental
expressions on a graph. ExprLib also provides the interface necessary to execute the graph using
explicit time integration schemes. Furthermore, we make extensive use of C++ templates [4, 5] in
our design to allow for the portability required by modern computational codes.

3.1. The DAG Multiphysics Approach
In this section, we provide a summary of the directed acyclic graph multiphysics approach

of Notz et al. . [3] and illustrate its main characteristics in generalizing the concept of solution
of partial differential equations. To make our exposition of the theory tangible, we make use of
a simple example. Consider the calculation of the diffusive flux of enthalpy in the reactive flow
simulation of multicomponent gases. For such a system, the total internal energy equation is

∂ρe0

∂t
+ ∇ · (ρe0u) = −∇ · Jh − ∇ · (τ · u + pu) , (1)

where ρ is the density, e0 is the total internal energy per unit mass, u is the velocity field, p is the
pressure, and τ is the stress tensor. In Eq. (1), the diffusive flux of enthalpy is given as

Jh = −λ∇T +

ns∑
i=1

hiJi. (2)

where λ is thermal conductivity of the gas mixture, T is the mixture temperature, hi and Ji corre-
spond to the enthalpy and mass diffusion of species i, respectively, and ns is the total number of
species.

A variety of models can be assumed for the thermal conductivity λ and the species mass diffu-
sion Ji, depending the physical situation at hand. The complete specification of a particular model
is not essential for the construction of a graph; the dependencies among expressions are all that
is needed in order to construct the integration scheme [3]. Details of the functional forms of any
of the vertices are hidden. Therefore, every expression can be thought of as a single software
component with inputs (its dependencies) and outputs (the field(s) it computes).

For this example, we will consider two models. The first corresponds to constant properties
and is given by 

λ = λ0 = const.
Ji = Di∇Yi

hi = hi (T )
, (3)
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Figure 3: Expression graph for the diffusion model with constant properties model Eq. (3).

The second model depends on the thermodynamic state of the mixture and is specified via
λ = λ (T, p,Yi)
Ji =

∑ns
j=1 Di j (T, p,Yk)∇Y j − DT

i (T, p,Yk)∇T
hi = hi (T )

. (4)

Here, Yi and Di are the mass fraction and the mixture averaged diffusion coefficient for species i,
respectively. Di j represent the multicomponent Fickian diffusion coefficients while the factor DT

i
is associated with thermal diffusion of species i.

The DAG approach for multiphysics simulations is founded on the decomposition of partial
differential equations into atomistic entities called expressions that expose data dependencies [3].
An expression is a fundamental entity in a differential equation and is usually associated with a
physical mechanism or process. For example, in Eq. (1), the diffusive flux Jh is represented by
an expression. In turn, expressions may depend on other expressions and so on. For instance,
using the constant properties model given by Eq. (3), Jh depends on the thermal conductivity λ,
the diffusion coefficient Di, and the temperature T . This dependency can be easily mapped into a
graph as illustrated in Fig. 3.

By representing a differential equation on a DAG, one simplifies the process of solving a
PDE by converting it into a series of related tasks that can be analyzed using graph theory. The
dependencies exposed by the graph are the only requirement for implementing new models. For
example, if one uses the model given by Eq. (4), that model may be easily inserted into the graph
with no algorithmic modification to the code. This is illustrated in Fig. 4 where new dependencies
have been easily exposed. In this sense, a multiphysics code can be thought of as a collection of
physical models that are turned on or off based on dependencies.

Execution is handled by a scheduler that traverses the DAG and manages memory required by
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Figure 4: Expression graph for the diffusion model with species dependent properties Eq. (4).

each node as well as execution of each node in a multithreaded environment. Memory manage-
ment includes asynchronous host-device transfers when accelerators such as Xeon Phi or NVIDIA
GPUs. Each node in the graph computes one or more quantities, which other nodes in the graph
have read-only access to. A given quantity can be available on multiple devices: host memory, and
multiple accelerator card memories, and the graph scheduler ensures that required transfers occur
between memory to maintain coherency as necessary.

In general, an expression requires the application developer to expose three essential ingredi-
ents: (a) the data copmuted by the expression, (b) the data required by the expression, and (c) a
method for updating and manipulating the supplied data.

Once a graph is constructed, a reverse topological sorting algorithm [6] may be used to auto-
matically generate the ordering of task execution. Once the an expression graph is constructed and
sorted, an algorithm is defined and the code is executed.

4. Runtime Parallelism: Uintah

So far we have discussed the technologies that were developed to address the three challenges
presented at the begining of the paper. Namely, Nebo for hardware and programming complex-
ity and ExprLib for multiphysics complexity. What remains is to put all of these together in a
massively parallel runtime environment. For this we use the Uintah computational framework [7].

The Uintah Computational Framework (UCF) is a massively-parallel software infrastructure
designed to solve partial differential equations (PDEs) [8, 9] such as those arising in fluid dynam-
ics, reacting flows, and combustion [10]. Uintah provides a set of tools that scientists and engineers
can use to develop physics-based utilities (called components) to simulate real-world phenomena.
To that end, several components have been developed over the years to leverage the scalability
and parallel features of Uintah. These range from tools to simulate material crack propagation to
buoyancy-driven flows and fully compressible flows.
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Uintah is a task-based parallel environment that provides a variety of HPC services. It provides
several schedulers for coarse grained automatic parallelization and inference of communication
patterns. Several load balancers are also provided to handle load-balancing at runtime. In addition,
Uintah provides parallel input/output (IO) and domain decomposition. One of the strengths of
Uintah is its task-based approach.

A Uintah task consists of a callback function with a specification of data dependencies (re-
quires) and outputs (computes). This is akin to the DAG approach discussed in §3. For each
depencency, the developer specifies the number of ghost cells required. This in turn helps Uintah
handle load-balancing and infer communication patterns efficiently. If a tasks requires ghost cells,
then Uintah will trigger the approprirate MPI communication to provide the ghost cell values to
the fields that need it.

Uintah tasks are similar to the concepts implemented in ExprLib (§3). However, as will be
shown in §5, ExprLib allows one to aggregate several smaller tasks and expose them as a single
Uintah task. Not only does this lead to memory optimizations via dynamic allocation and memory
pools, it also allows application developers to have control over the granularity of graphs. The
latter is left at the discretion of the application developer who has the choice to either expose every
single (ExprLib) expression as a separate Uintah task or lump as many expressions as possible into
larger Uintah tasks. In this sense, Uintah is responsible for coarse-grained parallelism [11] while
ExprLib is responsible for fine-grained, task decomposition, and data parallelism through Nebo.
Additional information about Uintah can be found at http://www.uintah.utah.edu.

5. Putting it all Together: Wasatch

Wasatch is a finite volume multiphysics application code that builds on top of Uintah, ExprLib,
and Nebo. Wasatch currently supports the following types of physics:

• Incompressible constant density Navier-Stokes solver

• Large Eddy Simulation (LES) with four turbulence models: Constant Smagorinsky, Dy-
namic Smagorinsky, WALE, and Vreman

• Arbitrarily complex geometries using stairstepping

• Arbitrarily complex boundaries and boundary conditions

• Low-Mach variable density flows

• First, second, and third order Runge-Kutta Strong Stability Preserving temporal integration

• Lagrangian particle transport

• Lagrangian particle boundary conditions (inlets and walls)

• Eulerian representation of particles via the Quadratrue Method of Moments (QMOM) for
solving population balance equations
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• Modeling solids precipitation in aqueous solutions

• Arbitrarily complex scalar transport - advection, diffusion, reaction, and sources

All of the aforementioned physics were developed using ExprLib and Nebo. For its runtime
parallelism, Wasatch uses Uintah’s task scheduling via a TaskInterface class. The TaskInterface
acts as a Uintah wrapper of ExprLib graphs. In other words, once an ExprLib graph is generated,
it is wrapped as a Uintah callback task. Once a callback is complete (or about to start), Uintah is
responsible for updating ghost cell information. Here’s how things work in practice:

• Parse input file

• Trigger appropriate transport equations

• Transport equations will trigger appropriate ExprLib root expressions to be constructed

• ExprLib generates multiphysics directed acyclic graph at runtime

• Graph is wrapped as a Uintah task using the TaskInterface class

• Uintah task execution starts, which triggers the ExprLib graph execution

• ExprLib graph is executed by visiting every node in the graph and executing Nebo expres-
sions

Uintah is therefore responsible for MPI-level parallelism, IO, and global scheduling. Wasatch
is responsible for the communication between ExprLib graphs and Uintah as well as for imple-
menting all the relevant physics. ExprLib and Nebo are responsible for fine-grained, task-level
data parallelism. In this formulation, ExprLib aggregates a number of small tasks and exposes
them to Uintah as one or more tasks. Data that live within the ExprLib graph are generally not
accessible to Uintah unless they are marked for IO. On the other hand, data at the boundaries of
a graph are generally accessible to Uintah and are shared between Uintah, ExprLib, and Nebo. A
graphical illustration of the how Wasatch and Uintah operate is shown in Fig. 5.

Wasatch 
(one ore more graphs) 

ExprLib Graph 
(one ore more expressions) 

ExprLib Expression  
(one or more Nebo 

assignments)

Nebo

Uintah 
Task-level parallelism 
MPI Communication 

IO 
etc…

TaskInterface

Figure 5: A graphical illustration of the relationship between Nebo, ExprLib, Wasatch, and Uintah. Nebo constitutes
the core of every expression. Expressions are used to describe various physics and are then assembled as an ExprLib

DAG that represents a PDE. One ore more ExprLib graphs are created by Wasatch and then exposed to Uintah via
the TaskInterface class.
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An example graph of a Wasatch simulation of a constant-density incompressible flow problem
is shown in Fig. 6. Each node on the graph represents a different portion of the physics involved
in an incompressible flow simulation. The various colors correspond to the ability of a certain
node to be executed on GPU or not. While most expressions can be executed on GPUs, the linear
solver3 is not GPU-ready (i.e. pressure equation), hence the light gray indicating a CPU-only node.

Legend

( x-mom_rhs ) 

( pressure ) 
( pressure_rhs )

( x-mom_rhs_partial ) 
(1 post-procs)

( time ) 
( dt )

( timestep )
( rkstage )

( pressure_src ) ( y-mom_rhs_partial ) 
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( dilatation ) 

( density ) 
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( u ) ( v ) 

( x-mom ) ( y-mom ) 
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( tau_yx ) 
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( x-mom_convFlux_x ) ( x-mom_convFlux_y ) ( tau_xy ) 

( tau_yy ) 
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( y-mom ) 
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CPU Enabled

Placeholder

Figure 6: Directed acyclic graph from a Wasatch simulation of an incompressible flow solving the constant-density
Navier-Stokes equations.

Next, we evaluate the scalability of Wasatch which has been tested against several applications
on CPU and GPU clusters. In what follows, we present (1) CPU, (2) single-node GPU, and (3)
GPU-cluster scalability.

5.1. CPU Scalability
Starting with CPU scalability, Fig. 7 shows the weak scaling of Wasatch on the three-dimensional

Taylor-Green vortex - a standard, non-trivial fluid dynamics simulation that represents the decay
of a vortex into fine turbulent structures. The scalability is tested for a fixed problem size per MPI
process across a range of MPI processes up to 256,000 processors. We find that Wasatch accom-
plishes the best scalability for the largest problem size of 1283 grid points per processor. Note that
the loss of scalability on other problem sizes is due to the overhead of the linear solver which is
required to enforce mass conservation in this case.

5.2. GPU Scalability
Next, we test Wasatch’s GPU capabilities on a suite of scalar transport problems ranging from

linear to nonlinear fully coupled systems of transport equations. The target equation is a generic

3The Hypre [12] linear solver is used in Wasatch. The coefficient matrix for the linear solver is assembled using
the HYPRE STRUCTMATRIX interface.
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Figure 7: Wasatch CPU weak scaling on Titan for the three-dimensional Taylor-Green vortex using the Hypre linear
solver for up to 256,000 processors and various patch sizes ranging from 323 to 1283.

scalar transport equation. This equation describes the temporal and spatial evolution of a quantity,
φ, subject to a velocity field u, diffusivity Γ, and source term S i

∂φi

∂t
= −∇ · uφi − ∇ · Γ∇φi + S i; i = 1, · · · ,N (5)

where the subscript i stands for the ith generic scalar and N is the total number of equations solved.
One typically solves an arbitrary number of these equations; hence the use of the subscript i.

Coupling between the various equations can be accomplished via the source term, S i. In an
attempt to represent a wide range of physics, we choose three types of source terms

S i =


0 No source terms
eφi Uncoupled source terms∑

j eφ j; j = 1, · · · ,N Coupled source terms
(6)

Note that these are meant to mimic the cost of Arrhenius kinetics calculations, and do not represent
a physically realistic model for reaction.

5.2.1. On-Node GPU Speedup
In this case, a total number of 30 equations is solved on a single compute node with a single

GPU. A total of 10 timesteps are taken. The mean time per timestep is then used to compare
the timings on the GPU and a single processor CPU simultion. The GPU speedup is reported in
Fig. 8. A speedup of up to 50x is achieved on the most complex problems as well as the largest
patch sizes. The results are consistent with the nature of the source terms used where maximum
speedup is achieved for the most pointwise-oriented calculations.
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Figure 8: Wasatch On-Node GPU speedup for a variety of scalar transport problems ranging from linear uncoupled
systems of PDEs to fully coupled.

5.2.2. GPU-Cluster Speedup
Similar to the on-node GPU speedup, the same problem was repeated on the Titan supercom-

puter for up to 12,800 GPUs. Results from weak scaling and speedup are shown for the various
physics and number of equations, covering 10 and 20 equations, respectively. Results are shown
in figures 9 through 11.

Fig. 9 shows the weak scaling and speedup results when solving the system of equations with-
out any source terms. While decent weak scaling is achieved, acceptable speedups are visible for
cases with more than 643 in resolution. Similar behavior is observed when solving the system of
equations with a simple uncoupled source term shown in Fig. 10. Finally, for the fully coupled
case shown in Fig. 11, speedups greater than one are visible at patch resolutions of 323 and upward
to more than 20 times speedup for a grid resolution of 1283 along with 20 equations.

These results are again consistent with the nature of the source terms being used. The cost
of MPI communication between GPU nodes is evident in the reduced speedup when compared
to the on-node results where a speedup of 50x was accomplished for the most computationally
demanding case.

6. Related Work

Many of the ideas presented in this paper can be found in the literature. The concept of a
DSL has been adopted by a variety of teams to address the challenges of modern computing
architectures. A comparison between Nebo and similar DSLs has been conducted by Earl et al. in
[1]. In that paper, Nebo is compared to POOMA [13], Pochoir [14], Liszt [15], and PotiMesh [16].

Another DSL that is worth mentioning is Nabla [17]. Nabla translates source files into C, C++,
and CUDA code and thus requires two-stage compilation. It provides support for job scheduling
that take input data and provide output. Upon compilation, a graph is generated by the nabla
compiler for what is called a Nabla component. A composition of several Nabla components
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Figure 9: Mean time per timestep and speedup for 10 (circle) and 20 (triangle) equations without source terms for up
to 12,800 GPUs on Titan. Results are shown for different patch sizes ranging from 163 to 1283
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Figure 11: Mean time per timestep and speedup for 10 (circle) and 20 (triangle) equations with fully coupled source
terms for up to 12,800 GPUs on Titan. Results are shown for different patch sizes ranging from 163 to 1283

produces a multi-physics application. One can think of this approach as a combination of ExprLib
and Nebo.

There are also DSL alternatives to tackle the hardware complexity problem. Notable mentions
are Kokkos [18, 19] from Sandia National Laboratories and RAJA [20] from Lawrence Livermore
National Laboratories. Both of these employ C++ to provide basic portable, parallel constructs
such as foreach. These are relatively low-level compared to Nebo, which provides a higher-level
abstraction.

In terms of the DAG approach, the foundation of ExprLib is based on the work of Notz et al. [3,
21]. Notable alternatives to ExprLib have been used and implemented in SIERRA [22, 23] and
Aria [24], Charon, and Phalanx as part of the Trilinos project [25].

7. Conclusions

In this paper, we discussed an approach to dealing with the volatile landscape of large-scale
hybrid-computing software development. Our approach consisted of tackling three problems en-
countered by modern application developers, namely, (1) hardware complexity, (2) programming
complexity, and (3) multiphysics complexity. We discussed how and Embedded Domain Specific
Language (EDSL) such as Nebo can help address hardware complexity by allowing developers to
write a single code but execute on multiple platforms. In addition, Nebo addresses programming
complexity by providing support for a wide range of discrete stencil operators such as gradients,
filters, etc. Finally, multiphysics complexity is addressed by using ExprLib, a C++ library capable
to representing a time marching algorithm as a directed acyclic graph (DAG). These technologies
are all put together to build Wasatch, a finite volume multiphysics code developed at the Uni-
versity of Utah. We discussed the capabilities and scaling properties of both Nebo and Wasatch.
Results indicate that near ideal scalability is reached in some cases and very promising speedups
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are obtained from the GPU and threaded backends.
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