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Abstract
To address the coding and software challenges of modern hybrid ar-
chitectures, we propose an approach to multiphysics code develop-
ment for high-performance computing. This approach is based on
using a Domain Specific Language (DSL) in tandem with a directed
acyclic graph (DAG) representation of the problem that allows run-
time algorithm generation. When coupled with a large-scale paral-
lel framework, the result is a portable development framework ca-
pable of executing on hybrid platforms and handling the challenges
of multiphysics applications. We share our experience developing
a code in such an environment - an effort that spans an interdisci-
plinary team of engineers and computer scientists.

Keywords Domain specific language, Computational physics,
Graph theory

1. Introduction
If one thing can be said about the recent development in comput-
ing hardware it is volatility. The changing landscape of hardware
(multicore, GPU, etc.) poses a major challenge for developers of
high-performance scientific computing (HPC) applications. Addi-
tionally, the problems being addressed by HPC are becoming in-
creasingly complex, frequently characterized by large systems of
PDEs with many different modeling options that each introduce
different nonlinear coupling into the system. Such demands to han-
dle multiphysics complexity add another layer of difficulty for both
application developers and framework architects.

Our goal is to sustain active development and conduct funda-
mental and applied research amidst such a volatile landscape. We
perceive the problem as having three key challenges:

• hardware complexity,
• programming complexity,
• multiphysics complexity.

The goal is then to develop a computational framework that allows
application developers to

• write architecture-agnostic code,
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Figure 1. Nebo speedup vs untuned C++ nested loops for assem-
bling a generic scalar equation. Tests were conducted on a single
process with for grid sizes ranging from 323 to 1283 points.

• write code that mimics the mathematical form it represents,
• easily address multiphysics complexity and its web of nontrivial

data dependencies.

In what follows, we review the software environment that allows
us to address the aforementioned challenges.

2. Addressing Hardware Complexity: Nebo
Nebo is an embedded domain specific language (EDSL) to aid in
the solution of partial differential equations (PDEs) on structured,
uniform grids. It provides useful operators such as gradients, diver-
gence, interpolants, filters, and boundary condition masks, and can
be easily extended to support various discretization schemes (e.g.,
different order).

One of the many advantages of an EDSL is that it allows devel-
opers to write a single code but execute on multiple backends, such
as CPUs, threads, and GPUs - all supported by Nebo. In addition,
one is able to fine-tune the backends leading to performance gains
compared to traditional C++ loops. It was shown that Nebo outper-
forms standard (untuned) iterator or nested loops. This is shown in
Fig. 1 where a generic scalar transport equation is assembled using
Nebo and then compared to two other major codes at the Univesrity
of Utah where untuned C++ nested loops are used. A speedup of
up to 10x is achieved for a grid size of 1283.
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Figure 2. Nebo thread speedup for different memoy block sizes in
bytes.

The threading performance of Nebo is shown in Fig. 2 where a
standard scalar transport is assembled using various memory sizes
and across a wide range of threads. A speedup of up to 12x is
achieved for the largest block size of 218 bytes on 12 threads.

Nebo is currently being used in two major application codes
at the University of Utah: Arches and Wasatch. Wasatch will be
discussed at length in §5.

In the grand scheme of scalable computing, Nebo provides
fine-grained parallelism at the loop level as opposed to task-level
parallelism, typically provided by a parallel framework.

In addition to being platform-agnostic, Nebo provides a high-
level, matlab-like interface that allows application developers to
express the intended calculation in a form that resembles the math-
ematical model. The basic Nebo syntax consists of an overload bit
shift operator separating a left-hand-side (LHS) and a right-hand-
side (RHS) expressions. The conditions for a Nebo expression to
compile is that the LHS and RHS expressions are of the same type.
For example, if a, b, and c are all fields of the same type (e.g. cell
centered variables in a finite volume grid), then

a <<= b + c

computes the sum of b and c. Nebo supports all the basic C++ math-
ematical functions such as sine and cosine along wil all fundamen-
tal algebraic operations (+, -, *, and /). Nebo supports absolute val-
ues as well as inline conditional expressions. This advanced Nebo
feature provides a powerful tool to assigning boundary conditions
for example. A conditional statement simply looks like

a <<= cond( cond1, result1)
( cond2, result2)
...
( default );

where cond1, cond2, result1, result2... are all arbitrary Nebo ex-
pressions.

Next, we discuss SpatialOps, a C++ library that provides a
structured-grid interface to Nebo along with stencil operations to
compute derivatives, filters, and other mathematical and numerical
operators.

3. Addressing Programming and Multiphysics
Complexity: SpatialOps and ExprLib

One of the many pitfalls of programming numerical methods for
partial differential equations are the operators. These typically con-
sist of gradients, divergence, filters, flux limiters, etc... A typical
implementation consists of a triply nested ijk loop with appropriate
logic to get the fields to properly align and produce a result of the

appropriate type and location on a grid. This is often exacerbated
by the numerical scheme used. For example, finite volume approx-
imations typically store fluxes at volume faces and scalars at cell
centers. The list goes on and if one is not cautious, it is easy to get
caught up accessing corrupt memory and producing inconsistent,
incorrect calculations.

3.1 SpatialOps
SpatialOps stands for Spatial Operators Library and provides tools
for representing discrete mathematical operators such as gradient,
divergence, interpolant to list a few.[? ] In addition, SpatialOps
provides the support to define spatial fields on structured grids
along with ghost cell and boundary mask information. It is designed
using C++ and is built on top of Nebo and provides the interface for
the application developer to access the entire Nebo functionality.

Probably the most important feature of SpatialOps is type
safety. Operations that result in inconsistent types will not com-
pile. SpatialOps currently supports 16 field types which consist of
four volumetric types corresponding to cell centered and x-, y-,
and z-staggered fields. Each volumetric type requires three face
field types, namely, the x-, y-, and z-surfaces.

Operators are objects that consume one type of field and pro-
duce another, depending on the stencil and type of discretization
used. For example, an x-gradient operator typically consumes a
cell-centered volumetric type and produces a field that lives on the
x-surface of the cell-centered volumes. This can be written using
Nebo syntax as

result <<= gradX(phi);

where phi is a cell centered field, gradX is a pointer to the Spa-
tialOps gradient operator, and result is an x-surface field.

Operators can be chained (inlined) as long as they produce the
correct field type. For example, the diffusive flux of a cell centered
scalar is

result <<= divX( gradX(phi) );

where, in this case, result is a cell centered field. This is allowed
here because the div operator consumes an x-surface field and
produces a cell-centered one.

For a list of supported fields, operators, and other details, the
reader is referred to the SpatialOps website located at: https://
software.crsim.utah.edu/jenkins/job/SpatialOps/doxygen/
fields-meshes.html

3.2 ExprLib
Numerical simulation is a rapidly growing field in pure and ap-
plied sciences. The data delivered by a particular simulation pro-
vides fine grained information about the physical processes taking
place in that system. This information is useful in verfying existing
hypotheses and predicting performance characteristics. In a variety
of cases, simulation aids in the discovery of new physical phenom-
ena and also helps in the design of practical models. The ability to
accomplish such high fidelity simulations necessitates the accurate
and precise solution of nonlinear and coupled partial differential
equations (PDEs). Typical high fidelity methods for transport phe-
nomen include Direct Numerical Simulation, Large Eddy Simula-
tion, Lattice Hydrodynamics, and Particle Dynamics.

The use of high fidelity methods requires advanced software de-
sign to address the software complexity and nonlinear coupling be-
tween governing equations. The traditional approach to designing
computational physics software relies almost entirely on specific
algorithms and is usually tailored to meet the requirements of the
application at hand. At the outset, the code is executed in a sys-
tematic order that is specified a priori. This code sequence is de-
termined by the model specifics that are being used. Choosing a
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different model requires an entirely different series of steps that of-
ten necessitate modifcation of the code. Codes that are based on
this model become complex and rigid when modified.

Code rigidity is caused by a focus on the algorithm or the flow of
data. This flow of data represents a high level process and requires
particular specification of task execution. To reduce code complex-
ity and rigidity, Notz et al. [7] introduced the concept of automated
algorithm generation for multiphysics simulations. Their software
model is centered on exposing and utilizing low level data de-
pendencies instead of high level algorithmic data flow. The out-
come constitutes a shift in focus from the algorithm (which implies
depencency among data) to explicitly exposing the dependencies
among data (which implies an algorithmic ordering).

Automatic algorithm generation is accomplished by first de-
composing a differential equation into basic expressions (e.g., con-
vection). Subsequently, these expressions are mapped as nodes in
a directed acyclic graph (DAG) that exposes the network of data
requirements. In the last step, the graph is analyzed using graph
theory to extract an optimum solution algorithm. The DAG multi-
physics approach provides an avenue for optimized code execution
by uncovering fine grained parallelism.

In this article, we discuss an implementation of the DAG ap-
proach for use with highly parallel computations. Our implementa-
tion uses the C++ programming language [9] to construct a library
capable of analyzing expressions and mapping them as nodes in a
DAG. The library also provides the interface necessary to execute
the graph using explicit time integration schemes. Furthermore, we
make exclusive use of C++ templates [1, 6] in our design to allow
for the portability required by modern computational codes.

3.3 The DAG Multiphysics Approach
In this section, we provide a summary of the directed acyclic graph
multiphysics appraoch of Notz et al. [7] and illustrate its main char-
acteristics in generalizing the concept of solution of partial differ-
ential equations. To make our exposition of the theory tangible,
we make use of a simple example. Consider the calculation of the
diffusive flux of enthalpy in the reactive flow simulation of multi-
compnent gases. For such a system, the total internal energy equa-
tion is

∂ρe0
∂t

+∇ · (ρe0u) = −∇ · Jh −∇ · (τ · u+ pu) , (1)

where ρ is the density, e0 is the total internal energy per unit mass,
u is the velocity field, p is the pressure, and τ is the stress tensor.
In Eq. (1), the diffusive flux of enthalpy is given as

Jh = −λ∇T +

ns∑
i=1

hiJi. (2)

where λ is thermal conductivity of the gas mixture, T is the mix-
ture temperature, hi and Ji correspond to the enthalpy and mass
diffusion of species i, respectively, and ns is the total number of
species.

A variety of models can be assumed for the thermal conduc-
tivity λ and the species mass diffusion Ji, depending the physical
situation at hand. The complete specification of a particular model
is not essential for the construction of a graph; the dependencies
among expressions are all that is needed in order to construct the
integration scheme [7]. Details of the functional forms of any of the
vertices are hidden. Therefore, every expression can be thought of
as a single software component with inputs and outputs.

For this example, we will consider two models. The first corre-
sponds to constant properties while the second depends on thermo-

dynamic state of the mixture. These are given by
λ = λ0 = const.

Ji = Di∇Yi

hi = hi (T )

, (3)

and
λ = λ (T, p, Yi)

Ji =
∑ns

j=1Dij (T, p, Yk)∇Yj −DT
i (T, p, Yk)∇T

hi = hi (T )

. (4)

Here, Di is the mixture averaged diffusion coefficient for species
i while Dij represent the multicomponent Fickian diffusion co-
efficients. The factor DT

i is associated with thermal diffusion of
species i.

The DAG approach for multiphysics simulations is founded on
the decomposition of partial differential equations into atomistic
entities called expressions that expose data dependencies [7]. An
expression is a fundamental entity in a differential equation and
is usually associated with a physical mechanism or process. For
example, in Eq. (1), the diffusive flux Jh is represented by an
expression. In turn, expressions may depend on other expressions
and so on. For instance, using the constant properties model given
by Eq. (3), Jh depends on the thermal conductivity λ, the diffusion
coefficient Di, and the temperature T . This dependency can be
easily mapped into a tree as illustrated in Fig. 3.

By representing a differential equation on a DAG, one simplifies
the process of solving a PDE by converting it into a series of related
tasks that can be analyzed using graph theory. The dependencies
exposed by the graph are the only requirement for implementing
new models. For example, if one uses the model given by Eq.
(4), that model may be easily inserted into the graph with no
algorithmic modification to the code. This is illustrated in Fig. 4
where new dependencies have been easily exposed. In this sense,
a multiphysics code can be thought of as a collection of physical
models that are turned on or off based on dependencies.

Execution is handled by a scheduler that traverses the DAG
and manages memory required by each node as well as execution
of each node in a multithreaded environment. Memory manage-
ment includes asynchronous host-device transfers when accelera-
tors such as Xeon Phi or NVIDIA GPUs. Each node in the graph
computes one or more quantities, which other nodes in the graph
have read-only access to. A given quantity can be available on mul-
tiple devices: host memory, and multiple accelerator card memo-
ries, and the graph scheduler ensures that required transfers occur
between memory to maintain coherency.

In general, an expression requires three essential ingredients:
(a) the data supplied by the expression, (b) the data required by
the expression, and (c) a method for updating and manipulating the
supplied data. It is therefore essential to attach unique identifica-
tion strings to each experession. These strings are called Expres-
sion Tags and are supposed to be generic, non-specific to a partic-
ular implementation implementation.

Once the graph is constructed, a reverse topological sorting
algorithm[3] may be used to automatically generate the ordering of
task execution. Reverse Topological ordering of a directed acyclic
graph is a linear ordering of its nodes such that each node is
executed before all nodes to which its inbound nodes. Once the
tree of expressions is constructed, an algorithm is defined and the
code is executed.

3.4 Software Implementation
Our software implementaiton of the DAG multiphysics approach
materializes in a C++ software library called ExprLib
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Figure 3. Expression graph for the diffusion model with constant
properties model Eq. (3).

Jh

λ hi Ji

T p

h Yj

ρh ρ ρYj

Figure 4. Expression graph for the diffusion model with species
dependent properties Eq. (4).

The design of ExprLib aims at addressing three vital software
design challenges: (a) facilitate dynamic transition in model form,
(b) enable task parallelism, and (c) remove specific concern over
flow of information in an algorithm. ExprLib exposes a simple
interface to generate algorithms based on graph theory. Once the
algorithm is generated, explicit time integration is used to obtain a
solution.

The tools provided by ExprLib are centered around three essen-
tial components: an expression, a field manager, and a scheduler.
The general concept behind using ExprLib is as follows. The user
first writes code for expressions using the Expression base class
and registers the expression with a factory. The user also indicates
what quantities are needed. This may be through activating trans-
port equations, etc., which trigger the requirement for the right-
hand-side of the PDE to be computed. As the graph is recursively
constructed through dependency discovery and analysis, only the
dependencies among expressions are pulled from the expression

1 class MyExpression
2 : public Expr::Expression <FieldT >
3 { /* declare private variables such as fields ,

operators , etc. here */
4 MyExpression( /* class -specific arguments -

typically Expr::Tag objects */ );
5 public:
6 class Builder : public Expr::

ExpressionBuilder
7 {
8 public:
9 Builder(Expr::Tag result ,

10 /* other arguments here */ );
11 Expr:: ExpressionBase* build() const;
12

13 private: /* add arguments here */
14 };
15 ~Test();
16 DECLARE_FIELD(FieldT , phi_)
17 DECLARE_FIELDS(SurfaceFieldT , f0_ , f1_) ...
18 void bind_operators( const SpatialOps ::

OperatorDatabase& opDB );
19 void evaluate ();
20 };

Listing 1. Skeleton of an expression base class.

registry and placed in the graph. The scheduler holds a graph and
a field manager and controls the execution and storage/memory in-
cluding required host-device transfers.

3.4.1 The Expression Base Class
The Expression base class is central to the design of ExprLib. In
general, an expression is built in two stages. In the first stage, the
expression is registered in the ExpressionFactory, but may not be
necessarily used in the graph. This occurs when, for example, the
input file includes additional expressions that are not used by the
governing equations. The second build stage for an expression takes
place when it is referred to as a dependency. Therefore, only those
expressions that are needed to construct the graph will actually be
built.

Every expression is associated with a Builder class and must
implement four methods. The Builder class is another base class
in ExprLib and provides the necessary mechanism for the two-
stage construction of an Expression. The four methods that an
expression must implement provide the interface for specifying
data dependencies and manipulation. The skeleton of an expression
in ExprLib is shown in Listing 1.

3.4.2 Required Methods
There are two methods that an Expression must implement. These
methods allow programmers to specify the dependencies, fields,
operators, and data manipulation for an Expression.

• bind_operators: This method is also called prior to execution
of an expression and allows the binding of operators that may
be used by this expression. Operators are retrieved by their type
from an OperatorDatabase object.

• evaluate: This method is used to populate the field that this
expression computes. This is, for example, where the RHS of
an equation can be calculated using the operators defined in the
expression.



4. Runtime Parallelism: Uintah
The Uintah Computational Framework (UCF) [4] is a massively-
parallel software infrastructure designed to solve partial differen-
tial equations (PDEs) [2, 5] such as those arising in fluid dynam-
ics, reacting flows, and combustion [8]. Uintah provides a set of
tools that scientists and engineers can use to develop physics-based
utilities (called components) to simulate real-world phenomena. To
that end, several components have been developed over the years to
leverage the scalability and parallel features of Uintah. These range
from tools to simulate material crack propagation to buoyancy-
driven flows and fully compressible flows. Additional information
about Uintah can be found at http://www.uintah.utah.edu

5. Putting it all Together: Wasatch
Wasatch is a finite volume multiphysics code that builds on top
of all the aforementioned technologies. Wasatch currently supports
the following types of physics:

• Incompressible constant density Navier-Stokes solver
• Large Eddy Simulation (LES) with four turbulence models:

Constant Smagorinsky, Dynamic Smagorinsky, WALE, and
Vreman

• Arbitrarily complex geometries using stairstepping
• Arbitrarily complex boundaries and boundary conditions
• Low-Mach variable density flows
• First, second, and third order Runge-Kutta Strong Stability Pre-

serving temporal integration
• Lagrangian particle transport
• Lagrangian particle boundary conditions (inlets and walls)
• Eulerian representation of particles via the Quadratrue Method

of Moments (QMOM) for solving population balance equations
• Complex precipitation physics
• Arbitrarily complex scalar transport - advection, diffusion, re-

action, and sources

All of the aforementioned physics was built on top of ExprLib,
SpatialOps, and Nebo. For its runtime parallelism, Wasatch uses
Uintah’s interface via a TaskInterface class. Here’s how things
work:

• Parse input file
• Trigger appropriate transport equations
• Transport equations will trigger appropriate root expressions to

be constructed
• ExprLib generates multiphysics directed acyclic graph at run-

time
• Graph is wrapped as a Uintah task
• Uintah task execution starts
• When Wasatch task is called, Wasatch triggers the ExprLib

graph execution
• ExprLib graph is executed by visiting every expression in the

graph and executing Nebo expression

An example graph for a Wasatch simulation of a constant-
density incompressible flow problem is shown in Fig. 7. Each
node on the graph represented a different portion of the physics
involved in an incompressible flow simulation. The various colors
correspond to the ability of a certain node to be executed on GPU
or not. While most expressions can be executed on GPUs, the linear
solver is not GPU-ready (i.e. pressure Poisson equation), hence the
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Figure 5. Wasatch weak scaling on Titan for the three-dimensional
Taylor-Green vortex using the Hypre linear solver for up to 256,000
processors and various patch sizes ranging from 323 to 1283.
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Figure 6. Wasatch GPU speedup for a variety of scalar transport
problems ranging from linear uncoupled systems of PDEs to fully
coupled.

node corresponding to the pressure is shown in light gray indicating
a CPU-only expression.

The scalability of Wasatch has been tested against several ap-
plications. Starting with CPU scalability, Fig. 5 shows the weak
scaling of Wasatch on the three-dimensional Taylor-Green vortex
- a standard, non-trivial fluid dynamics simulation that represents
the decay of a vortex into fine turbulent structures. The scalability
is tested for a fixed problem size per MPI process across a range of
MPI processes up to 256,000 processors. We find that Wasatch ac-
complishes the best scalability for the largest problem size of 1283

grid points per processor. Note that the loss of scalability on other
problem sizes is due to the overhead of the linear solver which is
required to enforce mass conservation in this case.

Next, we test Wasatch’s GPU capabilities on a suite of scalar
transport problems ranging from linear to nonlinear, fully coupled
systems of transport equations. A total number of 30 equations is
solved and the GPU speedup is reported in Fig. 6. A speedup of
up to 50x is achieved on the most complex problems as well as the
largest patch sizes. This should give us an idea of what problems
are worth using GPUs for in Wasatch.

http://www.uintah.utah.edu
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Figure 7. Directed acyclic graph from a Wasatch simulation of an incompressible flow solving the constant-density Navier-Stokes equations.

6. Conclusions
In this paper, we discussed our approach to dealing with the volatile
landscape of large-scale hybrid-computing software development.
Our approach consisted of tackling three problems encountered by
modern application developers, namely, (1) hardware complexity,
(2) programming complexity, and (3) multiphysics complexity. We
discussed how and Embedded Domain Specific Language (EDSL)
such as Nebo can help address hardware complexity by allowing
developers to write a single code but execute on multiple platforms.
To address programming complexity, we discussed SpatialOps, a
C++ library that provides an interface to the Nebo EDSL and de-
fines necessary operations for the discretization of PDEs on struc-
tured grids. Finally, multiphysics complexity is addressed by using
ExprLib, a C++ library capable to representing a time marching al-
gorithm as a directed acyclic graph (DAG). These technologies are
all put together to build Wasatch, a finite volume multiphysics code
developed at the University of Utah. We discussed the capabilities
and scaling properties of both Nebo and Wasatch. Results indicate
that near ideal scalability is reached in some cases and very promis-
ing speedups are obtained from the GPU and threaded backends.
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