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ABSTRACT: An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and
optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was
employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of
the model−data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing
syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and
applied to evaluate the uncertainty bounds of the literature experimental data. The initial H2/CO reaction model, assembled from
73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total
of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement
between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent,
would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for
parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of
them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared
to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction)
were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic
models.

1. INTRODUCTION

Developing predictive reaction models for complex chemical
systems requires integration of large amounts of theoretical,
computational, and experimental data collected by numerous
researchers. The model fidelity is judged by its prior infor-
mation, the quality of chemical kinetic data used (e.g., models
developed from “first principles”, with minimal parameter
fitting), and from posterior information, comparison of the
model predictions to available experimental observations. The
latter is taken as model validation, and the observed differences
drive modification of the model and design of new experiments.
This process, model update ⇒ validation ⇒ new experiments/
theory ⇒ model update, conducted iteratively, is generally
accepted as the core of the scientific method.1 The key challenge
is to organize this iterative process in such a manner as to ensure
its convergence and to find methods that increase the con-
vergence rate.2

The model update performed in isolation, i.e., on the basis of
an individual set of data, cannot guarantee the convergence and
rather leads to ineffectual proliferation of competing reac-
tion “mechanisms”.2 Combining larger amounts of data, from
multiple sources, of diverse nature, probing different aspects of
the system in question, even in an indirect way, was reasoned
to compensate for the incompleteness of an individual set of
measurements.2−4 This premise has found support in the
success of the GRI-Mech project.5 The initial numerical

framework centered on least squares optimization, minimizing
deviations between model predictions and experimental targets
by fitting reaction model rate parameters within their respective
uncertainty ranges.3,6−9 This protocol has now been followed
by others.10−13

The least squares optimization, on its own, does not lead to a
fully satisfactory solution. In addition to numerical difficulties
of finding a global minimum in a multi-dimensional parameter
space, the presence of experimental uncertainties and non-
rigorous nature of target weights makes the objective minimum
essentially a random outcome.2 Following this approach
recreates anew the reality of “embarrassment of success”:2

accumulation of now optimized mechanisms, as evidenced by a
recent comparison of 16 mechanisms of syngas combustion.14

None of the 16 mechanisms could be identified as performing
best under all of the conditions tested, and the authors resorted
to producing a new optimized mechanism,12 which they
described as the one “to provide the best reproduction of the
experimental data”. However, the results of the present study
will show that there exists a parameter set that outperforms that
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one of Varga et al.12 The point here is not which mechanism
performs better but how to ensure the convergence of model
improvement with the immediate benefits to society.
A roadmap for a convergent approach was suggested by the

introduction of Process Informatics,2 shifting the focus to
data and data uncertainty. The centerpiece of this framework
is a dataset,15 a properly organized collection of observed
experimental targets, their respective uncertainties, and
model(s) predicting the target values as function(s) of active
variables (typically model parameters) within their respective
ranges of uncertainty. The numerical part of the framework
is to transfer the parameter and target uncertainties to the
uncertainty of model prediction.
In the present work, we continued development of this

framework while applying it to a system of immediate practical
interest, syngas combustion. Specifically, we used the data ware-
housing and functionality of an automated data-centric infra-
structure, Process Informatics Model (PrIMe).2,16,17 Original
PrIMe data models and archival formats16,17 were employed,
because they provide a more comprehensive capture of the
ontology and uncertainty of the data, as compared to recently
suggested “modifications”12 that managed to lose some of this
critical capability without adding anything new.
For the numerical analysis, we employed the methodology

developed in a series of studies2,9,15,17−21 and termed Bound-to-
Bound Data Collaboration (B2BDC). It is a deterministic
framework of uncertainty quantification (UQ). The approach
deploys semi-definite programming algorithms,22 where the
initial bounds on unknowns are combined with initial bounds
of experimental data to produce new uncertainty bounds for
the unknowns that are consistent with the data and, finally,
deterministic uncertainty bounds for prediction in new settings.
The latter is accomplished in a single step, in a direct transfer
of uncertainty from its prior knowledge to prediction, thus
assuring the smallest value of uncertainty in prediction.20

Perhaps the most distinguishing feature of the B2BDC is
validation of the data−model system through computation of
the consistency measure of the dataset18 and its sensitivities to
the prior uncertainty bounds.19 This methodology has been
applied to several systems,18,23,24 and it allowed us to identify
problematic experimental data in the present study.
The key difference between the prior (GRI-Mech) optimi-

zation framework and the current PrIMe−B2BDC one is in the
outcome: a single optimized model is just one instance of
an infinite number of such possible models. The B2BDC
framework identifies all acceptable models, i.e., models that
satisfy the uncertainty information on the entire dataset.
Working on and enriching the same (communal) dataset is the
vehicle for the convergence. At any instance of the continuously
evolving dataset, one can make direct predictions on the dataset
or use the dataset for building specific instances of models,
optimal in one way or another. We demonstrate both of these
applications in the present study.
The chemical reaction system that we consider in the present

study is the H2/CO oxidation, which is a part of the DLR
hydrocarbon reaction mechanism and database.25,26 The
development of reaction models for larger hydrocarbons
may require modification of the H2/CO system. Continuous
reoptimization, in addition to problems discussed above,
becomes a tedious endeavor, and the increasing number of
optimization variables may lead to numerical difficulties.
Freezing some parameters, as was practiced in the past and
reintroduced recently,14 leads to the loss of information andT
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becomes a source of artificial controversies.2,15 The B2BDC
methodology applied in the present analysis avoids such
problems.
The paper is organized as follows: In section 2, we review

syngas model development, focusing on work performed in
recent years. Section 3 presents a brief overview of B2BDC,
which provides the foundation for the analyses described in the
paper. We then proceed, in section 4, with a description of
the reaction model, experimental targets, and their associated
uncertainties. Presentation and discussion of the numerical
results is given in section 5. We conclude with section 6, sum-
marizing the present experience and suggesting further
directions for improving the predictive ability of modeling
syngas combustion.

2. EXPERIMENTAL DATA
As mentioned in the Introduction, the data−model system that we
consider in the present study is a chemical reaction system of the
syngas oxidation. A mixture of hydrogen and carbon monoxide,
commonly called synthesis gas or syngas, can be obtained from natural
gas, coal, petroleum, biomass, and even organic waste. Syngas is used
as a direct fuel for clean combustion in electricity generation from coal,
petroleum coke, or heavy residuals in an integrated gasification
combined cycle (IGCC). In recent years, the role of syngas in
sustainable combustion processes and promising syngas utilization for
power generation triggered further characterization of the H2/CO
combustion system. Also, the H2/CO oxidation chemistry is the
principal building block in the hierarchy of hydrocarbon oxidation
models.
A large amount of thermokinetic and experimental data has

appeared for this system in recent years.10,12,16,23,25−124 Table 1
summarizes the most established, in our opinion, H2/CO reaction
models with experimental validation data that have been used.
One of the early investigations of H2/CO chemistry, which

underlies most modern models, is the study of Yetter et al.116 In
their study,116 previous investigation results were analyzed and
integrated in a CO/H2/O2 reaction mechanism, which was tested
against a wide range of available experimental data obtained from
shock-tube and flow reactors30,44,117 (Table 1). The model was
validated over a combined temperature range of 823−2870 K, fuel-
oxidizer equivalence ratios φ = 0.5−6.0, and pressures p = 0.3−
2.2 atm. The kinetics were analyzed in three temperature regimes (low,
intermediate, and high), where different reaction sets control the
radical pool. The high-temperature regime is associated with the H, O,
and OH radicals, while the low-temperature regime is dominated by
HO2 and H2O2. The intermediate-temperature regime serves as a
transition zone, in which the concentrations of H, O, OH, HO2, and
H2O2 intermediates are all nearly the same order of magnitude.
Moreover, this regime embodies the explosion limits, which separate
the slow reaction (chain propagation) from the fast reaction (chain
branching). Consequently, system pressure and composition affect the
limits of these regimes. Uncertainties in the kinetic and thermochem-
ical parameters were analyzed.
The updated H2/CO subset of the Leeds methane oxidation

mechanism120 implements reaction kinetic and thermodynamic data
along with the results (at the time of publication) from H2/air and
wet CO/air combustion mechanisms. The updated mechanism
was tested against hydrogen oxidation and H2/CO oxidation
experiments31,32,46,47,50,62,70,81,106 (Table 1). Uncertainties of the
simulation results, caused by the uncertainties in the kinetic
parameters and the heats of formation, were analyzed.
Davis et al.10 proposed a H2/CO kinetic model based on the GRI-

Mech 3.0 model.5 They presented a comprehensive literature review of
kinetic data and performed model optimization within the uncertainty
bounds of the relevant rate parameters with respect to 36 targets:
experimental data for ignition delays, laminar flame speeds, and species
profiles of H2 and CO measured in flames and flow reactors.44,65,81,105

Their model10 predicts the observed H2/CO oxidation experimental

data over the combined range of T = 298−2870 K, φ = 0.33−6.0, and
p = 1.0−9.6 atm (Table 1).

Saxena and Williams96 tested a relatively small detailed mechanism
for propane combustion76 to predict hydrogen and carbon monoxide
combustion. The performed study resulted in the revision of some rate
parameters, the elimination of one initiation step in the hydrogen
oxidation mechanism, and the addition of an initiation step for carbon
monoxide oxidation. With these alterations, a reasonable agreement
was obtained with measured burning velocities, diffusion flame
extinction conditions (for H2/O2), and autoignition times44,50,74,81

(Table 1). Combined parameter ranges were temperature of 298 and
1400−2870 K, φ = 0.4−6.0, and pressures p = 0.15−2.2 atm.

Li et al.76 and Chaos et al.39 updated the model used in the study.116

Li et al.76 revised the H2/CO sub-mechanism in a reaction model for
CO/H2O/H2/O2, CH2O, and CH3OH oxidation and modified it
based on the published measured data for ignition delays, laminar
flame speeds, and plug-flow concentration profiles44,50,59,65,81,84,117

(Table 1). Modifications of reaction rate coefficients responsible for
the formation of CO2 and CO were extensively investigated and
optimized with weighted least square fits of available experimental
measurements. This resulted in significantly closer prediction of the
experimental observations. Chaos et al.39 investigated important
features of H2/CO combustion at high pressures and relatively low
temperatures and also effects of surfaces, trace impurities, and
contaminants. The paper reviewed experimental efforts in the high-
pressure syngas oxidation and discussed the kinetic changes proposed
in the literature for improving predictions of new data. Further H2/CO
kinetic improvements related to investigations76,116 were also proposed
on the basis of recent high-pressure experimental observations83,99

(Table 1) and associated theoretical works. The authors noted the need
for careful analysis of data collected at high pressures.

Sun et al.101 developed a kinetic mechanism to model the measured
laminar flame speeds for CO/H2/air and CO/H2/O2/He mixtures at
different equivalence ratios and pressures up to 40 atm. The rate
coefficient of reaction CO + HO2 → CO2 + OH was calculated on the
basis of ab initio quantum chemistry and the canonical transition
state theory. The elaborated mechanism was successfully used to
model the experimental data48,101,117 (Table 1).

Frassoldati et al.49 extended the previous kinetic model of Ranzi
et al.126 They revised and validated a detailed kinetic model of
H2/CO combustion with particular focus on NOx formation and
especially the interactions of the syngas system with nitrogen
species.49 Their paper offers a critical collection of experimental
data29,41,44,52,56,65,68,73,81,97,99,101,105,107,113,117,121 and a kinetic model
capable of simulating the combustion of syngas mixtures and the
formation of pollutant species across a wide range of conditions, with
particular emphasis on high pressures (Table 1).

A syngas mechanism proposed by Le Cong et al.72 is the H2/CO
sub-model of the detailed combustion kinetic model for H2/CO/
CH2O/CH3OH/CH4 systems. Their updated kinetic scheme was
successfully validated against a large set of data for CO and H2/CO
combustion41,65,74,81,85,99,101,107,116,121,122 (Table 1). The effects of
total pressure, equivalence ratio, and H2/CO concentrations on flame
speeds are well-predicted. Also, the kinetics of oxidation of CO and
H2/CO in a turbulent flow reactor, a jet-stirred reactor (JSR), and the
high-pressure shock-tube experiments were successfully reproduced.

Cavaliere et al.38 adapted the mechanism of Saxena and William96 to
intermediate pressures based on the experimental measurements61,90,91

(Table 1). The H2/CO mechanism was tested over a temperature
range of 600−1400 K and a pressure range of 1.0−15.0 atm. H2O2 +
M = OH + OH + M and H + H2O2 = HO2 + H2 reactions were found
to be the rate-controlling steps for the prediction of the ignition time
at high pressures and low temperatures.

A detailed H2/CO/O2 reaction mechanism of Keŕomnes̀ et al.63 is
based on the former H2/O2 mechanism of Ó Conaire et al.,89 with
some updates to reflect new experimental data obtained in this work.
The reaction sequence H2 + HO2 = H + H2O2 followed by H2O2
(+M) = OH + OH (+M) was found to play a key role in the hydrogen
ignition under high-pressure and intermediate- to high-temperature
conditions. At low pressures (of the order of 1 atm) and low temperatures
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(below 1000 K), the process is controlled by the competition between
the chain-branching reaction H + O2 = O + OH and the chain-
propagating reaction H + O2 (+M) = HO2 (+M). The mechanism
accurately reproduces new high-pressure experimental data (ignition
delay times and flame speed) relevant to gas turbine conditions24 as
well as previous experimental data.34,45,56,63,69,81,85,93,101,122

The H2/CO kinetic mechanism of Goswami et al.53 is based on the
H2/O2 mechanism of Konnov66 and includes recently evaluated rate
coefficients. The CO set of reactions was taken from Konnov
0.6 version,67 with few modifications. After validation against new
measurements, the kinetic mechanism was further validated using
experimental data available in the recent literature for lean and rich
mixtures at elevated pressures. These data included laminar burning
velocities,34,63,69,81,85,93,101 ignition delay times,63 and speciation
measurements.117

The kinetic mechanism of Nilsson and Konnov88 is a further
expansion of the H2/O2 mechanism recently proposed by Alekseev
et al.28 The reaction rate coefficients were chosen based on an
extensive literature review. Particular attention in this mechanism was
given to the chemistry of HOCO, produced from the CO + OH
reaction. It must be pointed out that most available syngas
mechanisms do not include HOCO, since it is only expected to be
of importance at some extreme high-pressure and low-temperature
conditions. The mechanism was validated against a wide range of
experimental data, including ignition, flame structures, and laminar
flame speeds,23,27,36,37,61,65,71,86,93,94,98,99,101,104,114,117 with particular
attention given to laminar burning velocities. Variations in the H2/CO
ratio, pressure, temperature, and diluents (CO2, H2O, and N2) were
considered. In comparison to the mechanism of Keŕomnes̀ et al.,63 this
mechanism gives better agreement with experimental laminar burning
velocities at rich conditions.
Varga et al.12 developed an optimized joint hydrogen and syngas

combustion mechanism. The model of Keŕomnes̀ et al.63 was updated
with the recently optimized hydrogen combustion mechanism of
Varga et al.11 and further optimized using a global parameter
optimization method.127 The experimental data included ignition
delay times measured in shock tubes and rapid compression machines
(1723 targets and 156 data sets), burning velocity measurements
(2311 targets and 256 data sets), and species profiles measured in
shock tubes, flow reactors (968 targets and 53 data sets), and JSRs
(103 concentration targets and 11 data sets). Directly measured rate
coefficients of 15 reactions were also used. A total of 48 Arrhenius
parameters and 5 third-body collision efficiencies of 18 elementary
reactions were optimized. The optimized mechanism was compared
to 19 recent hydrogen and syngas combustion mechanisms and was
shown to provide the closest reproduction of the used experimental
data.
The experimental data applied for model validation in the present

study are listed in the last row of Table 1 and in Tables S1 and S2 of
the Supporting Information. Only ignition delays and laminar flame
speeds were used in the analysis: these experimental measurements
generally have lower uncertainty in comparison to species concen-
tration profiles. Also, the quantity of experimental ignition delay
and laminar flame speed measurements greatly exceeds those of
species concentrations. Having more data included in the analysis
should provide more objective statistics and more meaningful model
validation.

The importance of uncertainty in chemical kinetic problems
prompted development of methods for kinetic model optimization
and uncertainty quantification.2,9,15,17−21,127−130 In the present work,
we used the methodology of B2BDC,2,9,15,17−21,127−130 which is briefly
described next. We then proceed with a description of the newly
constructed dataset, i.e., the selected experimental targets, reaction
model, and associated uncertainties, detailing the methodology
adopted for evaluation of the uncertainties. This will be followed by
presentation and discussion of the numerical results.

3. THEORETICAL BACKGROUND: B2BDC

B2BDC is an optimization-based framework for combining
models and experimental data from multiple sources to explore
their collective information content.2,9,15,17−21,127−130 The
approach can decisively indicate whether related experimental
data are consistent with each other within a specified chemical
kinetic model, explore sources of inconsistency, discriminate
among differing models, make model interval predictions, and
analyze sensitivity of uncertainty propagation. We begin by
reiterating some key definitions.

3.1. Quantities of Interest (QoI). QoI is a collection of
experimental observations of physical processes, coupled with
respective uncertainties, assessed as lower and upper bounds on
the observed values, i.e., Le and Ue for each eth QoI. Each
physical process can be represented by a common chemical
reaction model, C(x), and a reactor physics model, Re, with the
two forming a combined numerical model that we refer to as
Me(x), with prior knowledge on the domain of parameters thus
constraining each parameter x to an interval [xmin, xmax] and all
together to a hypercube x ∈ H.
A key requirement for B2BDC is the formulation of a

dataset, which entails creation of dataset units for all QoI, e = 1,
2, ..., from a common kinetic model, experimental observations,
and their uncertainties.
The computational model Me(x) must produce outputs that

are consistent with the reported QoI uncertainties. Hence,
additional constraints that the true model parameters must
satisfy are

≤ ≤L M x U e( ) for alle e e (1)

The subset of H satisfying (eq 1) is called the feasible set, F, of
parameters; i.e., all model parameter values that jointly satisfy
all of the prior information and all of their model predictions
are consistent with the reported experimental observations.
The integral part of the B2BDC framework is approximation of
the Me(x) outputs for given QoI by quadratic (or rational
quadratic) surrogate models,9 Me(x), and hence, the feasible set
can be defined as

= ∈ ≤ ≤ ∀F x H L M x U e: ( )e e e (2)

Table 2. Evaluation of Uncertainty Intervals for Selected Shock-Tube Experimentsa

driven-section dimensions

length
(m)

error
(%)

internal diameter
(cm)

error
(%)

temperature interval
(K)

error
(%)

pressure
(atm)

error
(%) dilution

error
(%) tmeas (μs)

error
(%)

>8 >10 T < 1000 +5 p > 15 +5 yes 0−50 +5
<8 +5 <10 +5 T > 1600 +5 p > 30 +10 none +5 50−500 +0

every 15 +5 500−1000 +5
1000−1500 +10
every 500 +5

aThe starting uncertainty is 20%.
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where Me(x) designates a surrogate model of eth QoI. A
parameter value that is not in F is at odds with at least one of
these constraints.
In this way, the first “bound” in the “bound-to-bound”

nomenclature is associated with (a) the form of the prior
information, namely, that the true model parameters must be
both contained in the parameter hypercube H (in the form of
bounds on the components), and (b) the true parameters must
result in model predictions of all QoI (i.e., training experi-
ments) that are within the measurement bounds declared by
the experimenters, namely, Le ≤ Me(x) ≤ Ue for all e. Together,
these are the “bounds” that define F. Subsequent B2BDC
computations (model parameter analysis and optimization) can
be performed only if the feasible set F is non-empty.
3.2. DataSet Consistency. Dataset consistency is analysis

that examines the existence of a feasible parameter vector by
determining the consistency measure of dataset D.18

γ γ

γ

= −
−

≤ −
+

≤ −
−

γ ∈
C e

L U

M x
L U U L

max , subject to (for all ): (1 )
2

( )
2

(1 )
2

D
x H

e e

e
e e e e

,

(3)

In this definition, the original constraints (eq 1) are augmented
with a scalar relaxation parameter, γ, where positive values of γ
imply tightening of the constraint (dataset is consistent) and
negative values imply loosening (dataset is inconsistent).
The consistency measure, CD, quantifies how much the con-
straints can be tightened while still ensuring the existence of a
set of parameter values whose associated model predictions
match (within the bounds) the experimental QoI.
3.3. Model Prediction. Model prediction is the prediction

interval for property P by model MP that is consistent with all
of the model/observation pairs in the dataset. The B2BDC
computation expresses that, into two optimization problems for
the lower and upper interval end points, LP and UP

=

=
∈

∈

L M x

U M x

min ( )

max ( )

P
x F

P

P
x F

P (4)

The length UP−LP quantifies the amount of uncertainty in MP
value conditioned on the fact that the true parameter vector is
contained in the feasible set F. The mathematical methodology
of B2BDC is invoked for the constrained optimization of a
function of interest f over the feasible set F. The computed fmin
and fmax constitute the “to-bound” aspect: the bounds that
describe the prior information and the bounds on experimental
observations that are mapped into bounds on prediction.
The mathematical details for polynomial surrogate models can
be found in the study by Seiler et al.21

In what follows, a consistent dataset for the studied H2/CO
data−model system will be produced and tested for con-
sistency. The kinetic model will be optimized over the feasible
region of the parameter space of the H2/CO data−model
system using methods described in the study by You et al.130

Optimization constrained to the feasible set, methods LS-F
and 1N-F,130 ensures that all model predictions fall within
the uncertainties of experimental QoI. Method LS-F uses a
weighted least squared objective, while 1N-F is a one-norm
minimization that aims at the smallest number of parameters to
be changed. We also employed, for comparison, method LS-H,

which is a least squared minimization constrained to the prior
knowledge hypercube, H.

4. DLR-SYNG DATASET
A key requirement for the analysis is the formulation of a data-
set, which entails creation of dataset units from experimental
observations and a common kinetic model. A dataset unit
consists of the measured observation, uncertainty bounds of the
measurement, and a model that transforms active parameter
values into a prediction for the measured QoI. The active
model parameters were multipliers to the rate coefficients,
denoted hereafter by λ; they relate to parameters x in section 3
through logarithmic transformation, namely, x = ln λ. The rea-
soning behind using only multipliers is discussed in section 5.2.
Active parameters were identified via sensitivity analysis.9

A quadratic response surface was developed for each QoI in
terms of its own set of active parameters via computer
experiments performed by sampling x from H, arranged to a
factorial design.9 Once developed, the dataset can be subjected
to rigorous numerical analysis.

4.1. Ignition Delay Time QoI. To account for syngas
ignition, we selected a set of the shock-tube syngas ignition
measurements51,58,61,69,79,80,82,83,90,91,104,108,130 that covers a
wide range of temperatures (800−2500 K), pressures (0.5−
50 bar), and equivalence ratios (φ = 0.5−1.50). Evaluation of Le
and Ue for each QoI was accomplished by creating an empirical
rule, which is motivated below.
The fuel ignition produced in a shock tube is a combination

of several physical and chemical phenomena. Fluid-flow patterns
developed behind the shock that cannot be assumed homo-
geneous and uniform are classified as “non-idealities” of shock-
tube experiments.79,131−139 Facility-dependent effects and
energy-release phenomena can increase the non-idealities and
influence the instrument readings, thus adding to the uncertainty
of experimental data. Although the presence of the non-idealities
in shock tubes have been well-documented,79,132−136,138−140

there are no simple protocols to quantitatively assess their impact
on measured ignition delays. However, it is this assessment that
may determine the usefulness of the experimental data for model
validation. The issue is not just a few percent uncertainty in the
measured value but realization that the observed phenomenon
can be an expression of mechanisms other than chemical
kinetics. The origin of such a conclusion goes to the work of
Tony Oppenheim, who introduced distinction between mild and
strong ignition;140 the latter is driven essentially by chemistry,
but the former is not. The results of the present study, supported
by a rigorous quantitative assessment, point further to the para-
mount importance of considering such aspects for suitability of
QoI selection for model validation.
Unfortunately, reports of experimental observations are

seldom accompanied by uncertainty quantification, and when
such information is present, it usually reflects an assessment of
aleatoric uncertainty and not epistemic uncertainty. For the
purpose of dataset construction, we designed an empirical
protocol for a priori assignment of the uncertainty bounds to
the measured observations included in the dataset. For this
purpose, the strongest non-ideality phenomena were deter-
mined across the investigations, and the facility- and fuel-related
factors that affect these phenomena were identified. The influ-
ence of the operating conditions (pressure, temperature, and
equivalent ratios) on these factors was taken into account. The
dominant facility-related non-ideality phenomena were attrib-
uted to two gas dynamics effects: (i) boundary layer formation
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after shock passing (resulting in hydro- and thermo-
inhomogeneities behind the shock wave) and (ii) post-shock
compression (interaction of the reflected shock wave with
the contact surface). The dominant fuel-related non-ideality
phenomenon, as discussed above, is energy-release: the weak-
ignition regime (non-uniform/distributed ignition) and the
strong-ignition regime (initiated by autoignition at the end
wall of the shock tube).135,140 The factors that influence these
phenomena are length and diameter of the driven section,
duration of the reaction, mixture dilution, and nature of carrier
gas (CG). The operating conditions enhance the influence
of these factors. For instance, the non-uniform/distributed
ignition accomplished with flame propagation will prevail at
lower temperatures, T < 1000 K.135,136

In our empirical protocol, the “ideal case” (vanishing
influence of “non-idealities”) was defined as measurements
performed in a shock tube with the driver-section length of
≥3.0 m and the driven-section length of ≥8.0 m with an
internal diameter (most important factor) larger than 10.0 cm,
in a temperature interval of 1000−1600 K, pressure less than
15 atm, a fuel/air ratio exceeding 0.3, dilution with a mon-
atomic gas 1:2 or higher, and the measured ignition delay time
tmeas lower than 500 μs.79,131−139 The systematic (epistemic)
experimental uncertainty caused mostly by temperature,
pressure, and concentration measurements as well as measure-
ment location was estimated as 15%. Radical impurities were
evaluated as extra 5% uncertainty.139 Formulated in this
manner, the “starting point” for identification of the shock-
tube data uncertainty becomes 20%. Deviations from the “ideal
case” conditions were evaluated by adding a 5% uncertainty for
each criterion not satisfied to the ideal case. For a measured
ignition delay time longer than 1000 μs (mostly at low
temperatures), 5% uncertainty was added per every 500 μs.
At longer measurement times, the influence of the gas dynamic
effects on the ignition process (which can be in the weak-
ignition regime) is increased. At such conditions, if the
experimental data uncertainty were evaluated by the authors
to be larger than 20%, the evaluation of the authors was taken
as the starting point; otherwise, if the reported uncertainties
were lower than 20%, we assumed the starting point to be 20%.
Our uncertainty evaluation rules are documented in Table 2.
Ignition delay targets selected for analysis and their evaluated
uncertainties can be found in Tables S1 and S3 of the
Supporting Information.
4.2. Laminar Flame Velocity QoI. To represent

flame propagation conditions, we selected a set of flame
velocities at 0.1−0.5 MPa that have been investigated using
a variety of techniques (Table 1). The laminar flame
speeds included in the present dataset were taken from
studies42,53−57,71,75,81,85,86,101,102,110,111,114,115,119 (Table S2 of
the Supporting Information). They were selected to cover the
full range of operating conditions available in the literature. The
flame speeds measured at high pressures are relatively scarce.
Experimentalists estimate the current uncertainties in laminar
flame speed measurements to be in a range of about 5−10%,
increasing with pressure (>0.5 MPa) and fuel/air ratio (φ > 2).
Figure 1 shows the uncertainty bars adopted from the
literature69 for atmospheric conditions. From our evaluation
of the available data, illustrated in Figure 1, the uncertainty of
syngas atmospheric laminar flame speeds can be assumed to
be 10% for φ < 2, 15% for 2 < φ < 3, and 20% for φ > 3.
For higher pressures, we added 5% to the uncertainty. The
results of this empirical rule for the data uncertainty evaluation

are reported in Table 3. Laminar flame speed targets selected
for analysis and their evaluated uncertainties can be found in
Tables S2 and S4 of the Supporting Information. The complete
dataset contains 167 QoI, 122 ignition delays, and 45 laminar
flame speeds, presented in the Supporting Information.

4.3. Kinetic Model. The chemical reaction model assembled
for the studied H2/CO system (6 elements, 17 species, and 73
reactions) is a submodel of the DLR C0−C2 reaction model,26

which is the base chemistry of the DLR reaction database for
heavy hydrocarbon oxidation. Originally, this kinetic model was
based on the H/O, C1, and C2 chemistry of the Leeds methane
oxidation mechanism;25,120,141 it has been improved, modified,
and extended26 on the basis of experimental data partially
integrated into Table 1. The complete list of the involved
reactions and their kinetic parameters are reported in Table S5
of the Supporting Information. Most of the used kinetic
data follow the recommendations by Baulch et al.33 The
modifications made in the present study, relative to prior
evaluations,33,120,141 are discussed next.
The chain initiation reaction

+ → +H O OH OH2 2 (R1)

was included in the model in addition to the step33

+ → +H HO H O2 2 2 (R2)

Three initiation reactions of H2 oxidation are usually
discussed:142−146 reaction R1, reaction R2, and H2 + O2 →
O + H2O. The values of Ripley et al.142 and Jachimovski
et al.143 were obtained from the rate coefficient optimization of
the experimental ignition delays. Michael et al.144 studied the
total rate of initiation in a reflected shock tube. Through the
fitting of the O radical concentration with the proposed
reaction mechanism, it was concluded that reaction R1 is
negligible and its rate constant was evaluated as 0. Filatov
et al.145 investigated three possible modes (the concerted
addition, the oxene insertion, and the hydrogen abstraction
followed by hydrogen rebound) of reaction between dioxygen
and dihydrogen molecules at the ground triplet state and
excited singlet state of O2. With the performance of calculations

Figure 1. Comparison of literature experimental data for atmospheric
50:50 H2/CO/air laminar flame speed with the reported uncertainty
bars.69

Table 3. Evaluation of Uncertainty Intervals for the Selected
Laminar Flames

φ p (atm)
error
(%) p (atm)

error
(%) p (atm)

error
(%)

0.5−2 1−5 10 5−10 15 >10 20
2−3 1−5 15 5−10 20 >10 25
>3 1−5 20 5−10 25 >10 30
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at the (14,10)CASSCF/6-31G** and MR-(S)DCI/cc-pVTZ
levels of quantum theory, they found that the “rebound”
mechanism is dominant among the three mechanisms. This
“rebound” mechanism can be reduced to two sequences H2 +
O2 → H + HO2, H + HO2 → OH + OH and H2 + O2 → H +
HO2, H + HO2 → O + H2O. Two other mechanisms, which
lead to oxywater (the oxene insertion) and to H2O2 and
OH + OH (concerted addition), do not play any significant
role in the oxidation reaction because their transition structures
are highly energetic and are characterized by two imaginary
frequencies. Karkach and Osherov146 investigated three chain
initiating steps: H2 + O2 → 2HO, H2 + O2 → H + HO2, and
H2 + O2 → H2O + O. These authors performed quantum
ab initio analysis of the transition structures on the triplet H2O2

potential energy surface responsible for the main chemical reac-
tions and calculated the transition state theory rate constants
for the most important bimolecular chemical channels. Karkach
and Osherov146 have also confirmed that the reaction step R1 is
relatively slow, but at the high pressure and high temperature
conditions, it can influence the radical production process.
Although reaction R1 cannot compete with its reverse (−R1) in
initiation, we included this step in our model to have all con-
ceivable initiation channels at the extreme operating conditions
(rocket engines) and to ascertain the model completeness for
future updates. The rate coefficient for reaction R1 was adopted
from the work of Karkach and Osherov,146 with an uncertainty
factor of 10. To support this selection, the comparison of the
rate coefficient calculated by Karkach and Osherov146 for the
reverse of reaction R2 to experimental data obtained in the
study144 is shown on Figure 2.

The three-molecular reaction

+ + → +H O ( M) HO ( M)2 2 (R3)

strongly influences combustion regimes of hydrogen and can
shift the explosion limit behavior of H2/O2 mixtures. Hence,
reaction R3 has been extensively studied experimentally and
theoretically.66,82,147−152 Significant progress has been made to
provide a detailed description of the rate coefficient depend-
ence upon the temperature, pressure, and chemical nature
of the bath gas M. The rate coefficients obtained and

recommended in the literature have very similar values, but
Fcent has a relatively large discrepancy in the data: Fcent = 0.5−
0.72 for M = Ar and N2, and Fcent = 0.5−0.8 for M =
H2O.

148,151,152 The rate coefficient of Troe152 was incorporated
in the model for the high-pressure limit. The low-pressure-limit
rate coefficients for M = He, O2, and N2 measured by Michael
and co-workers150 and for M = Ar and H2O measured by Bates
et al.147 were adopted. The study and recommendations of
Fernandes et al.148 performed for the falloff behavior were
considered: Fcent = 0.5 for M = He, Ar, O2, and N2, and Fcent =
0.6 for M = H2O.
The rate coefficients of hydrogen recombination with

different third bodies

+ + → +H H M H M2 (R4)

were updated on the basis of analysis performed in the work.149

We note that there are no reliable experimental data for this
reaction, and its reaction rate value accepted in the literature, in
different models and reviews, follows from ref 153. For M = Ar,
the rate value from the study33 and for M = H, H2, N2, and
H2O from the investigation153 were used in the present model.
The atom transfer reaction

+ → +CO O CO O2 2 (R5)

has been studied by different research groups and is well-
documented.50,154−158 Selected experimental data are shown
in Figure 3. The correlation recommended by Tsang and

Hampson158 and quantum chemical calculations of Sharipov
and Starik156 give good agreement with the experimental data.
The rate coefficient adopted in the present work is based on
the recommendation of Tsang and Hampson,158 with an
uncertainty factor of 5.
The bimolecular reaction

+ → +H HCO H CO2 (R6)

has a chain-terminating character. The formation of H2 and CO
at all temperatures occurs predominantly by direct abstraction
studied by Christoffel and Bowman.159 The recommendation
of Baulch et al.,33 adopted in the present study, treats the rate
coefficient of this reaction as nearly independent of the
temperature between 298 and 2500 K, with an average
value of 9.0 × 1013 cm3 mol−1 s−1 and an uncertainty factor of
2. These data agree with the relatively new experiments of

Figure 2. Arrhenius plot of rate coefficients for the H2 + O2 → OH +
OH142,143,146 and H2 + O2 → H + HO2

144 reactions.

Figure 3. Temperature dependence of the rate coefficient for reaction R5
measured by different researchers (symbols) and estimated by Tsang
and Hampson158 and Sharipov and Starik156 (lines).
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Friedrichs et al.160 and the classical trajectory study of Troe
and Ushakov.161

The well-studied reaction

+ → +HO CO H CO2 (R7)

is important in combustion chemistry because it is the main
pathway in the conversion of CO to CO2, with a major energy
release derived in the oxidation of hydrocarbons. The reaction
rate coefficient is essentially flat at low temperatures but
increases quickly at T > 500 K.33 This behavior is attributed to
the complex mechanism of the reaction that proceeds via
the formation of a vibrationally excited HOCO intermediate,
HOCO*, which can decompose to form H and CO2 or
undergo collisional stabilization. Joshi and Wang162 showed
that the formation of the HOCO adduct leads to an increase in
the rate coefficient with pressure, but most available syngas
mechanisms do not include HOCO. Recently, the inclusion of
the HOCO reaction subset was investigated by Nilsson and
Konnov.88 It was shown that the HOCO reaction subset does
not alter the model predictions of laminar burning velocities,
ignition delay times, or oxidation and can be needed mostly at
the high pressures and low temperatures. Therefore, HOCO
was not included in the present mechanism, and reaction R8
was treated as pressure independent. Its rate coefficient was
based on the recommendation of Baulch et al.,33 which is in
good agreement with recent experimental investigations.162,163

The uncertainty factor of this rate coefficient was estimated to
be 1.26.
High-temperature oxidation of hydrocarbons is known to be

sensitive to reaction

+ → +HCO O CO HO2 2 (R8)

Other channels of this reaction that form CO2 + OH or HCO3
are of little importance under the conditions relevant to
combustion.33 Recent shock-tube measurements of Colberg
and Friedrichs164 in the temperature range of 739−1108 K and
Fassheber165 at temperatures of 1285−1760 K allow for a
reasonable fit of the overall temperature dependence of the
available data in the form of an extended Arrhenius expression
over the temperature range of 295−1705 K, kR8 = 6.92 ×
106T1.90e690/T cm3 mol−1 s−1, as shown in Figure 4. This expression

was accepted in the present work. The uncertainty of this rate
constant is close to a factor of 2.5.
Although there is much interest in reaction

+ → +CO HO CO OH2 2 (R9)

because of its influence on syngas combustion at high pressure
and temperature, large discrepancies exist among literature
rate values for gas turbine operating conditions.84,101,158,169,170

Existing experimental studies of the rate coefficient of reaction R9
have been performed mostly at low temperatures, below 500 K.
At higher temperatures, the rate coefficient has been evaluated
either indirectly or inferred from kinetic measurements when
reaction R9 is of secondary importance.170 In the previous
revision of the present model, the reaction rate coefficient
was adopted from Tsang and Hampson.158 It was recently
pointed out that the rate should be revised to a lower value.
For instance, such a trend was obtained by Mueller et al.84 in
the development of a detailed kinetic mechanism on the basis
of experimentally measured species profiles over wide ranges of
pressure (0.5−14.0 atm) and temperature (750−1100 K).
The estimations of Mittal et al.,169 deduced from ignition delay
measurements and modeling with a complex kinetic model, also
suggest a decrease in the rate coefficient by a factor of 10 from
that of Baulch et al.33 A further decrease in the rate coefficient
value of reaction R9 was suggested in ab initio calculations
performed at pressures up to 40 atm and temperatures of
300−2500 K by Sun et al.101 and for pressures up to 500 atm
and temperatures of 300−2500 K by You et al.170 The value
of the rate coefficient adopted in our model for reaction R9
follows the calculations of Sun et al.,101 with an uncertainty
factor of 2.
The hydrogen atom in HCO is weakly bonded and is

relatively easily lost in direct unimolecular decomposition
under combustion conditions

+ → + +HCO M H CO M (R10)

The direct measurements of the rate coefficient for this reaction
at moderately low temperatures were performed by Timonen
et al.171 (M = He, N2, and Ar) and Krasnoperov et al.172

(M = He). The data of Friedrichs et al.160 bridge the tem-
perature gap between the direct data of Timonen et al. and
Krasnoperov et al. and the indirect high-temperature measure-
ments of Cribb et al.,173 as shown in Figure 5. In the study of Li

Figure 4. Arrhenius plot of the measured rate coefficient kR8 from
Colberg and Friedrichs,164 Fassheber et al.,165 DeSain et al.,166

Timonen et al.,167 the theoretical study of Hsu et al.,168 and
recommendations of Fassheber et al.165 and Baulch et al.33

Figure 5. Rate coefficient of reaction HCO + M → H + CO + M.
Symbols are experimental data. Lines are the recommendations of
Baulch et al.33 and Li et al.76
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et al.,76 the weighted least squares fit of literature results for
reaction R10 yielded kR10 = 4.75 × 1011T0.66e−7485/T cm3 mol−1 s−1,
which predicts values within uncertainties of both prior and
new measurements.160,166,167,172 It must be pointed out that
these correlations were obtained by fitting low-pressure-limit
data. Nevertheless, significant deviations from the low-pressure
limit can occur only at high pressures172 that are beyond
the scope of practical combustion processes.171 Therefore,
reaction R10 may be regarded as being in the low-pressure limit
for most combustion applications. The rate constant adopted
in the present work was based on the recommendations
of Li et al.76

Destruction of CO by O atoms in reaction

+ + → +CO O ( M) CO ( M)2 (R11)

is important only in the dry combustion of CO because the
destruction of CO by OH radicals is much faster otherwise.
Therefore, a major problem in measuring the rate coefficient of
reaction R11 is that any H2O impurity leads to OH formation
that, in turn, accelerates CO destruction significantly. The rate
coefficient exhibits pressure dependence at pressures in excess
of 1 atm.158 Available data show that the activation energy in
the low-pressure limit seems to be positive at low temperatures
but negative at high temperatures, switching at about 1000 K.174

In most combustion models,10,63,76,102 the combination of the
low-pressure rate coefficient from Westmoreland et al.174 and the
high-pressure rate coefficient from Troe,175 slightly modified by
Mueller et al.,84 is used. The rate coefficient adopted in the
present work was based on this latter recommendation, with
the uncertainty factor of 2. Another recommendation is based
on the low-pressure rate constant of Tsang and Hampson.158

Nilsson and Konnov88 use the recently calculated high-pressure
rate coefficient of Jasper and Dawes,176 which is 7−35 times
larger than the value used in many combustion kinetic
models.
The present model was extended with the OH* reaction sub-

mechanism, taken from Kathrotia et al.,177 to reproduce the
ignition delay times recorded in shock tubes by the OH*
chemiluminescent measurements.
The model parameters, the selected nominal reaction rate

coefficients, and the uncertainty ranges assigned to multipliers λ
are listed in Table S6 of the Supporting Information. The
uncertainties in the active parameters, represented by the lower
and upper bounds of λ, were assumed equal to those proposed
in literature sources or evaluated from a statistical treatment of
the literature data.
A preferred key (or PrIMe ID) was prescribed to each

structural element in the reaction model. In this way, each
structural element has a “pointer” to the referenced information
and/or file. Such a constructed set of files defines the reaction
model, C(x), in PrIMe. All of the experimental and model data
were documented in the PrIMe data warehouse. Selected for
analysis, experimental QoI are described in the dataAttribute
files of the PrIMe data collection.16 These QoI together with
the corresponding model Me(x) and the experimental and
parameter bounds form a dataset. We will designate the present
dataset as DLR-SynG. The complete model and experimental
data are available in the PrIMe data warehouse.16

5. RESULTS AND DISCUSSION
The ignition delay times and laminar flame speeds were modeled
with numerical tools of PrIMe16 and numerical packages
CHEMKIN II178 and Chemical Workbench.179 The ignition

delay time was computationally defined by the peak in the
OH or OH* concentration, temperature, or pressure. The
thermal diffusion model was applied for calculation of
the one-dimensional freely propagating laminar premixed
flame using CHEMKIN II with over 1000 grid points for
each condition.

5.1. Consistency Analysis. We began the analysis by
employing eq 3 with the initial dataset, DLR-SynG 0, which
included all 167 QoI (122 ignition delays and 45 laminar
flame speeds) and 55 active parameters (Tables S3−S5 of
the Supporting Information). The results indicated a massive
inconsistency. Eight QoI, those listed in Table 4, were found to

be self-inconsistent. These were the ignition delay times that
were not able to be reproduced within their respective
uncertainty bounds by the model employing rate coefficients
within their respective uncertainty bounds, H. These eight self-
inconsistent QoI were removed from the initially constructed
dataset, thus forming what we refer to as the DLR-SynG 1 data-
set. The latter, however, still remained an inconsistent dataset.
To continue with the analysis, we employed a newly developed

method of computing the vector consistency measure (VCM),
similar to eq 3 but with original constraints augmented with
individual relaxations γe for each bound.180 The VCM method
determines the minimal bound changes, each bound by its own
extent, that result in dataset consistency. Its application to
DLR-SynG 1 identified such a dataset-consistency point by
changing 30 ignition delay times and 7 laminar flame speeds,
shown in Tables 5 and 6, respectively. We emphasize that
the VCM-identified feasible parameter set is a single point in H.
Because this point possesses some optimal attributes, we
compare the model predictions obtained with this set of
parameters, M(xVCM), to the optimization results in section 5.3.
To proceed with further features of the B2BDC framework,

we created a new dataset by removing the 37 QoI identified by
VCM, thus forming the DLR-SynG 2 dataset contacting 122
QoI. This latter dataset is consistent, meaning that all of its 122
QoI are consistent with each other and with the 55 active
parameters.

5.2. Posterior Information. The reader may recall that we
started the analysis by creating H, which designates a subset
of parameters that represents the prior knowledge on their
uncertainties. The shape of H can be either rectangular,
implying independence of individual parameter uncertain-
ties,9,15 or truncated by planes or surfaces imposing known
correlations among parameters. Typical examples of such a
priori correlations are those between pre-exponential factors
and activation energies of rate coefficients11,127 or rate constant
ratios.181 While there are no limitations to employing such
additional information within the B2BDC framework, the

Table 4. Eight Self-Inconsistent QoI

T5 (K) p5 (atm) ϕ
target PrIMe

ID
estimated uncertainty

(%) reference

1263 1.1 0.5 a00000309 30 61
1695 1.6 0.5 a00000352 30 69
2004 1.6 0.5 a00000355 25 69
1975 1.6 0.5 a00000358 25 69
1436 1.6 0.5 a00000359 25 69
1027 1.6 0.5 a00000360 35 69
1883 1.6 0.5 a00000503 30 80
1008 1.6 0.5 a00000504 50 80
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present results indicate that the main point at issue is the
quality of the experimental data and not necessarily that of
parameters. This is demonstrated by examining sensitivities
of the consistency measure of the DLR-SynG 2 dataset with
respect to the uncertainty bounds of parameters and QoI,
displayed in Figure 6. Inspection of these results shows a
significantly larger impact (i.e., |sensitivity × uncertainty|) on
the degree of consistency from the experimental uncertainty
compared to that of the parameter uncertainty. In light of this,
we employed a rectangular H in the present work, leaving the
a priori parameter correlations to future refinements.
While H designates prior information, feasible set F sum-

marizes posterior information: all parameter value combina-
tions that satisfy their own bounds and also the QoI bounds.
The size and shape of F compared to those of H represent
information gained as a result of the B2BDC analysis. Projec-
tion of F on each x yields the posterior range of the

parameter uncertainty.15 Those that changed are reported in
Table 7. For the rest of the parameters, the posterior ranges
were the same as the prior ones, indicating that the
experimental data included in the present analysis did not aid
in narrowing down the uncertainty ranges of these parameters
individually. However, such an outcome does not necessarily
imply no information gain for a given parameter; while the
extreme parameter values (bounds) may not change, the
feasible set may and usually does eliminate some combinations
of these parameters with others, which is addressed next.
Two-dimensional projections of F on pairs of x reveal their

mutual correlation. Examples of possible outcomes are shown
in Figure 7. The top left panel in Figure 7 demonstrates the
absence of correlation; any pair of values of the rate coefficients
of reactions HCO + O → CO + OH and HCCO + O2 → CO2

+ CO + H within their respective (λmin, λmax) bounds is feasible.
The top right panel also shows a case of no correlation, but

Table 5. Bound Changes of the Ignition QoI Suggested by VCM

T5 (K) p5 (atm) ϕ target PrIMe ID estimated uncertainty (%) reference lower bound change (%) upper bound change (%)

900 0.6 0.5 a00000110 50 61 −14.84
936 1.2 0.5 a00000113 40 61 13.00
1015 1.1 0.5 a00000189 30 61 0.92
1183 1.1 0.5 a00000190 30 61 10.14
929 2.6 0.5 a00000191 50 61 431.95
1132 16.2 0.5 a00000228 35 58 −12.78
1051 15.3 0.5 a00000236 30 58 −2.56
1097 15.6 0.5 a00000237 35 58 −13.48
1054 15.6 0.5 a00000241 30 58 86.11
1057 1.1 0.5 a00000308 30 61 1.46
977 2.3 0.5 a00000310 40 61 187.12
1149 2 0.5 a00000311 30 61 28.59
1304 1.7 0.5 a00000312 30 61 48.63
943 22.3 0.5 a00000316 35 91 175.15
1182 12 0.5 a00000335 25 69 11.94
1351 1.6 0.5 a00000353 30 69 17.76
980 1.6 0.5 a00000354 40 69 44.21
1273 1.6 0.5 a00000356 25 69 6.02
992 1.6 0.5 a00000357 35 69 28.49
1146 1.6 0.5 a00000490 30 80 −4.55
1397 12.5 0.5 a00000498 30 80 −16.77
1284 12.5 0.5 a00000499 30 80 −1.25
1100 12.5 0.5 a00000500 30 80 51.79
1360 12.5 0.5 a00000505 30 80 51.07
1291 32 0.5 a00000507 30 80 14.50
981 1.2 1.0 a00000491 20 108 −79.93
1065 1.3 1.0 a00000492 20 108 −6.40
975 1.7 1.0 a00000495 20 108 −34.47
999 1.8 1.0 a00000496 20 108 −44.16
1048 1.7 1.0 a00000497 20 108 −10.55

Table 6. Bound Changes of the Laminar Flame Speed QoI Suggested by VCM

T0 (K) p (atm) mixture ϕ
target PrIMe

ID
estimated uncertainty

(%) reference
lower bound change

(%)
upper bound change

(%)

300 1.0 50/50% CO/H2/air 0.8 a00000128 10 101 −0.73
300 1.0 50/50% CO/H2/air 1.2 a00000129 10 101 −0.30
300 1.0 95/5% CO/H2/air 1 a00000260 10 101 2.43
300 0.5 95/5% CO/H2/air 1 a00000269 10 56 4.74
300 1.0 95/5% CO/H2/air 0.6 a00000271 10 56 −6.75
600 15.0 50/50% CO/H2/He 0.6 x00000471 20 85 −6.18
373 1.0 50% H2−50% CO/air,

H2O = 0.15
1.2 a00000534 10 114 5.34
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now while any of the (λmin, λmax) values for reaction CH + O→
CO + H is feasible, for reaction CO + OH → CO2 + H, only λ
values within a narrower range, about (0.80, 0.86), are feasible.
The bottom left panel shows a positive correlation, with higher
values of λ(O2 + H → OH + O) feasible only with higher
values of λ(O2 + H → HO2) and vice versa, and the bottom
right panel shows a negative correlation and is substantially
shifted from the initial recommendations, represented by
the central point, (0 0). A collection of all two-dimensional
projections informs the structure of the feasible set, F. One can
also explore three- or four-dimensional correlation plots.
Projections of F on parameter−QoI pairs depict correlations

of the parameter and QoI uncertainties. Several such examples
are presented in Figure 8. Furthermore, the B2BDC frame-
work also allows one to examine correlations among QoI
uncertainties. These examples are shown in Figure 9. It is
pertinent to note that the initially selected QoI were assumed
uncorrelated. The correlations exposed in Figure 9 have their
origin in the constraints imposed in the model−data system,
the DLR-SynG 2 dataset. For instance, the bottom left panel of
Figure 9 indicates that predictions for the flame speed of QoI
a00000535 and ignition delay time of QoI a00000318 can have
only values represented by the blue region. The latter originates

from the kinetic model being constrained to reproduce the rest
of the experimental observations within their respective ranges
of uncertainties.

5.3. Parameter Optimization. While the primary focus of
the B2BDC framework is on prediction over the feasible set, it
also supports parameter optimization.130 Four sets of optimized
model parameters were investigated and intercompared in the
present study. The first approach is LS-H, a (weighted) least-
squared fit constraining parameter values to their initially
assessed uncertainty ranges, H. This is now a common
approach.2,5,9,12,63,127,129 B2BDC supports two more refined
methods of optimization,130 LS-F and 1N-F, where the
objective is minimized with x being constrained to the feasible
set F. The three problems are easily expressed as mathematical
optimizations. The LS methods minimize the familiar sum of
weighted least squared deviations, with weights we, between the
surrogate model prediction and the reported measured value, ye.
The difference lies in where the search takes place: LS-H
considers all of H, while LS-F restricts the search to F.

∑

∑

‐ −

‐ −
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w M x y
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In contrast, the 1N-F problem treats the nominal parameter
vector, the starting set of parameter values (x0 = 0), as
“preferred”. As seen in section 5.1, this parameter set lies
outside the feasible region F. The goal of the 1N-F method is to
find with fewest number of changes to x0, a parameter vector
that is feasible. Mathematically, the one norm, ∥ ∥1, is a well-
known approximation to enforce such sparsity,22 i.e.

‐ || − ||
∈

x x1N F: min
x F

0 1

The LS-F and 1N-F optimizations were performed with the
final dataset, DLR-SynG 2, because the two methods are
designed to work with an existing feasible set. Finally,
the fourth set of parameters that we examined is the one

Figure 6. Impact factors (|sensitivity × uncertainty|) of DLR-SynG 2 consistency measure with respect to upper (red) and lower (blue) uncertainty
bounds of QoI (top) and model parameters (bottom). Only the top 10 are shown for each case.

Table 7. Active Parameters with a Decrease in Uncertainty
Rangesa

λ prior bounds
λ posteri-
or bounds

reaction lower upper lower upper

HO2 + H → H2 + O2 0.50 2.00 0.56 2.00
CO + OH → CO2 + H 0.80 1.26 0.80 1.08
CO + O (+M) → CO2 (+M) 0.50 2.00 0.50 1.97
H + O + M → OH + M 0.20 5.00 0.96 5.00
H2 + O → OH + H 0.63 1.58 0.81 1.58
HO2 + OH → H2O + O2 0.32 3.16 0.39 3.16
H2 + OH → H2O + H 0.65 1.63 0.65 1.52
O2 + H → OH + O 0.80 1.26 0.90 1.26

aBounds that changed are shown in italic.

Energy & Fuels Article

DOI: 10.1021/acs.energyfuels.6b02319
Energy Fuels 2017, 31, 2274−2297

2285

http://dx.doi.org/10.1021/acs.energyfuels.6b02319


corresponding to the single consistent point of the DLR-SynG
1 dataset, resulting from the VCM optimization.180

The average deviations of the optimized model predictions
from the experimental observations are depicted in Figure 10.
The deviations for all individual experiments are given in
Figure S1 of the Supporting Information. Some of the individual

comparisons are shown in Figures 11−17, with the inclusion of
the most recent literature model.12 Experimental targets of
the DLR-SynG dataset in these figures are designated by
a star. The eight self-inconsistent QoI (excluded from the
DLR-SynG 0; Table 4) are colored red, and those excluded
from DLR-SynG 1 (listed in Tables 5 and 6) are colored green.

Figure 7. Two-dimensional projections of feasible set F on pairs of x. The axes are rate-coefficient multipliers, λ, of the indicated reactions.
Their ranges represent the uncertainty bounds.

Figure 8. Two-dimensional projections of feasible set F on parameter−QoI pairs. The horizontal axes are rate-coefficient multipliers, λ, of the
indicated reactions, and the vertical axes are QoI values. Their ranges represent the uncertainty bounds.
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Inspection of the results displayed in Figure 10 highlights
several features. All optimization methods result in param-
eter sets that produce a better agreement with the experiment
than the original set composed of literature recommenda-
tions. The LS-H optimization, constrained only to the prior
uncertainty ranges of parameters, results in the lowest average
deviation, as expected, but at the expense of violating uncer-
tainty bounds of 13 experimental QoI. Only the LS-F and
1N-F optimization methods, with additional constraints to the
QoI uncertainties, do not violate any of the QoI bounds, by
design. The average deviation produced by LS-F is larger but
not significantly larger than that of LS-H. The 1N-F method
gives a larger average deviation, yet it changes the least
number of variables, as shown in Figure S2 of the Supporting
Information. The reaction model corresponding to the LS-F
optimization can be found in Table S7 of the Supporting
Information.
An explicit comparison is shown for some of the QoI in

Figures 11−17 as well as in Figures S3−S7 of the Supporting
Information. The visual observation is that all of the optimized
models seem to perform with about the same overall quality;
some models do better for one set of conditions, while others
are closer to other experimental data sets (see Figures 11−13
and 17 and Figures S3−S5 of the Supporting Information).
The shock-tube ignition delay times show a larger variation
between different models. The problem here could lie with the
incomplete instrumental model182 used in the simulation of
ignition phenomena, because it does not capture the “non-
idealities” of shock-tube experiments with sufficient detail135

or the development of a mild-ignition regime,140 which is not
entirely driven by chemistry. These factors are especially
under suspicion in the inconsistent ignition delay targets.
Generally, the laminar flame speeds are predicted better by
all models, with all simulations falling within the uncertainty
bounds of experimental observations (see Figures 14−17 and

Figures S6 and S7 of the Supporting Information), reflecting
perhaps the higher experimental accuracy of the measure-
ments.183

5.4. Model Prediction. As was mentioned earlier, one of
the key features of the B2BDC methodology is prediction
on the feasible set. The existence of the feasible set is
established by forming a dataset and examining its con-
sistency, the procedure that can be referred to as model
validation. Once the feasible set is established and the model
is validated, one can examine the prediction of a model for a
QoI that was not included in the validating dataset, referred to
as a blind prediction.
First, we made blind predictions for experimentally

observed QoI that were not included in the dataset.
The results are reported in Figure 17; they include three
sets of ignition delay times and one set of laminar flame
speeds. The two sets of ignition delays, displayed in the
left two panels of Figure 17, are those measured in highly
dilute mixtures. In these cases, the predictions of all of the
models are grouped closely together. On the other hand, the
predictions for the other two cases, ignition delays (top right)
and laminar flame speeds (bottom right) for non-dilute
mixtures, show significant differences. The predictions of
B2BDC-optimized models are all grouped together and are
essentially within the reported uncertainties of the exper-
imental observations. The initial model predicts the ignition
delay times within their uncertainties and the laminar flame
speeds reasonably close to their upper uncertainty bounds.
The model of Varga et al.12 substantially overshoots the upper
uncertainty bounds in both cases.
In the next test of blind prediction, we focused on what one

may consider extreme operating conditions of a combustor,
having a fuel with a low heating value at low temperatures and
high pressures. Specifically, we selected a fuel mixture
containing 1.0% H2, 5.3% CO, 42.7% H2O, and 51.1% CO2

Figure 9. Two-dimensional projections of feasible set F on QoI pairs. The axes are QoI values. Their ranges represent the uncertainty bounds.
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that is mixed with preheated air under fuel-lean conditions,
ϕ = 0.5, p = 12 bar, and T = 720−820 K.
The model predictions are displayed in Figure 18, along

with those of Varga et al.12 Also shown, as black vertical lines, are
uncertainty intervals computed using B2BDC with the DLR-
SynG 2 dataset. These intervals reflect all of the uncertainty
information on the DLR-SynG 2 dataset, those of the parameters,
and those of the dataset targets. Inspection of the results depicted
in Figure 18 indicates that all models but one,
LS-H, predict the new target within the B2BDC-predicted
bounds. The LS-H predictions are definitely outside the bounds.
This outcome is not unexpected, as suggested by our Conclusion.

6. CONCLUSION

Developing predictive models2 has become the goal in much
of the modeling studies of reaction systems. Numerical
optimization of complex reaction networks, of the kind that
guided the development of GRI-Mech,2,5,9 has now been
accepted as one of the underlying methods in this pursuit (see,
e.g., recent publications12,63,127). In the language of the present
work, this is the LS-H approach, a least-squares minimization
constrained to a priori selected parameter ranges. The results
of the present study, however, demonstrate that the LS-H
optimization may miss some critical information on the
model−data system.

Figure 10. (Top) Average sum-of-squares deviations of the optimized model predictions from the experimental observations. (Bottom) Number of
bound violations, i.e., when model-predicted QoI values are outside their respective uncertainty bounds. The individual bars correspond to the
indicated parameter sets. “Original” represents the initial literature value set (Table S5 of the Supporting Information), and the rest of the values
designate the optimization methods of the present work. Colored in red are results obtained with the DLR-SynG 1 dataset, and colored in blue are
those obtained with the DLR-SynG 2 dataset.
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It has been known for some time (see the study by Frenklach3

and references cited therein) that it is rather unproductive to
search for a single optimal point in analysis of chemical kinetics,
because the nature of the problem leads to correlated regions in

Figure 11. Ignition delay times: experimental data,61,79 symbols; initial model, black line; Varga et al.12 model, gray line; LS-H, red dotted line; VCM,
red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line. Black stars are targets of the DLR-SynG 2 dataset; red stars are self-
inconsistent targets; and green stars are targets deleted from the DLR-SynG 1 dataset.

Figure 12. Ignition delay times: experimental data,58,108 symbols; initial model, black line; Varga et al.12 model, gray line; LS-H, red dotted line;
VCM, red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line. Black stars are targets of the DLR-SynG 2 dataset, and green
stars are targets deleted from the DLR-SynG 1 dataset.
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parameter space, having many (if not infinite number) of such
optimal points with practically indistinguishable predictions.
The present results further demonstrate such outcomes.

Whether it is a statistically established confidence region3

(or credible region in the present Bayesian terminology) or
a deterministically defined feasible set,15,21 analysis based

Figure 13. Ignition delay times: experimental data,69,80 symbols; initial model, black line; Varga et al.12 model, gray line; LS-H, red dotted line; VCM,
red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line. Black stars are targets of the DLR-SynG 2 dataset; red stars are self-
inconsistent targets; and green stars are targets deleted from the DLR-SynG 1 dataset.

Figure 14. Laminar flame speeds: experimental data,101 symbols; initial model, black line; Varga et al.12 model, gray line; LS-H, red dotted line;
VCM, red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line. Black stars are targets of the DLR-SynG 2 dataset, and green
stars are targets deleted from the DLR-SynG 1 dataset.
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on these regions of “optimality” should be more informative.
Indeed, as we saw with the present results, the LS-H mini-
mization produces the lowest value deviation; however,
there are a substantial number of individual predictions that
exceed the prescribed experimental uncertainty. The practical
implication of such an outcome can be paraphrased as follows: the
LS-H optimization hides the truth by averaging good with bad.
On the other hand, the consistency analysis of B2BDC, probing

the feasible set existence, immediately identified inconsistent

experimental targets. This mathematical result does not identify
whether the problem is with the model itself, its parameter
values, or experimental observations (these are the questions
for the combustion and kinetic scientists to resolve) but does
identify where to look.
For the particular system that we analyzed, the suspicion is

on the instrumental models used to simulate the ignition. The
future will tell if our present speculation on the possible source
of the inconsistency is correct or not. What is definite, however,

Figure 15. Laminar flame speeds: experimental data,56,111,114 symbols; initial model, black line; Varga et al.12 model, gray line; LS-H, red dotted line;
VCM, red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line. Black stars are targets of the DLR-SynG 2 dataset, and green
stars are targets deleted from the DLR-SynG 1 dataset.

Figure 16. Laminar flame speeds: experimental data,53,54,71,86 symbols; initial model, black line; Varga et al.12 model, gray line; LS-H, red
dotted line; VCM, red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line. Black stars are targets of the DLR-SynG 2
dataset.
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is that the feasible set analysis of B2BDC identified the problem
otherwise hidden in “averaged” least squares optimization.
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Ignition delay time measurements (Table S1), laminar
flame speed measurements from experimental data for

PrIMe flame speed (Table S2), ignition delay QoI (Table
S3), laminar flame speed QoI (Table S4), input reaction
model (Table S5), model parameters (Table S6), relative
deviations of the optimized model predictions from the
experimental observations, corresponding to the cases
depicted in Figure 10 (Figure S1), change in model para-
meters as a result of optimization with the DLR-SynG 2
dataset using LS-H and 1N-F methods (Figure S2),
comparison of computed and experimental ignition delay
times (Figures S3−S5), and comparison of computed

Figure 17. Ignition delay times79,104 and laminar flame speeds:86 experimental data, symbols; initial model, black line; Varga et al.12 model, gray line;
LS-H, red dotted line; VCM, red dash-dotted line; LS-F, blue dashed line; and 1N-F, blue short dashed line.

Figure 18. Ignition delay times: initial model, black solid line; Varga et al.12 model, red solid line; LS-H, green solid line; VCM, blue solid line; LS-F,
yellow solid line; 1N-F, purple solid line; and uncertainty intervals, black vertical bars.
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and experimental laminar flame speeds (Figures S6 and
S7) (PDF)
LS-F reaction model optimized on the DLR-SynG 2
dataset (mech.txt), thermodynamic data transport (ther-
mo.txt), and transport data (transport.txt) (ZIP)
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Comparison of the performance of several recent syngas combustion
mechanisms. Combust. Flame 2015, 162, 1793−1812.
(15) Frenklach, M.; Packard, A.; Seiler, P.; Feeley, R. Collaborative
data processing in developing predictive models of complex reaction
systems. Int. J. Chem. Kinet. 2004, 36 (1), 57−66.
(16) Frenklach, M. PrIMe; http://primekinetics.org.
(17) You, X.; Packard, A.; Frenklach, M. Process informatics tools for
predictive modeling: Hydrogen combustion. Int. J. Chem. Kinet. 2012,
44 (2), 101−116.
(18) Feeley, R.; Seiler, P.; Packard, A.; Frenklach, M. Consistency of
a reaction dataset. J. Phys. Chem. A 2004, 108 (44), 9573−9583.
(19) Russi, T.; Packard, A.; Feeley, R.; Frenklach, M. Sensitivity
analysis of uncertainty in model prediction. J. Phys. Chem. A 2008, 112
(12), 2579−2588.
(20) Russi, T.; Packard, A.; Frenklach, M. Uncertainty quantification:
Making predictions of complex reaction systems reliable. Chem. Phys.
Lett. 2010, 499 (1−3), 1−8.
(21) Seiler, P.; Frenklach, M.; Packard, A.; Feeley, R. Numerical
approaches for collaborative data processing. Optim. Eng. 2006, 7 (4),
459−478.
(22) Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge
University Press: Cambridge, U.K., 2004.
(23) Li, X.; You, X.; Wu, F.; Law, C. K. Uncertainty analysis of the
kinetic model prediction for high-pressure H2/CO combustion. Proc.
Combust. Inst. 2015, 35 (1), 617−624.
(24) Jatale, A.; Smith, P. J.; Thornock, J. K.; Smith, S. T.; Hradisky,
M. A validation of flare combustion efficiency predictions from large
eddy simulations. J. Verif. Valid. Uncert. Quantification 2016, 1 (2),
021001.
(25) Slavinskaya, N. A.; Frank, P. A modelling study of aromatic soot
precursors formation in laminar methane and ethene flames. Combust.
Flame 2009, 156 (9), 1705−1722.
(26) Slavinskaya, N. A.; Riedel, U.; Dworkin, S. B.; Thomson, M. J.
Detailed numerical modeling of PAH formation and growth in non-
premixed ethylene and ethane flames. Combust. Flame 2012, 159 (3),
979−995.
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